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ABSTRACT

In an attempt to mitigate the expanding counter-UAV capabilities of adversary countries de-
veloped in response to the United States’ increased reliance on these platforms, we apply a
nondeterministic search pattern to a finite area searcher. By implementing a Levy distribu-
tion on search leg lengths we analyze the trade-offs between efficiency and evasiveness of the
searcher, comparing the expected time to target detection for a given set of Levy parameters
to a probabilistic time to counter-targeting based on intelligence driven enemy capability. The
culmination of this thesis is the development of a robust simulation tool, capable of model-
ing various parameters on both searcher and search area, the output of which is a quantifiable
estimate on the probability of mission success.
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Executive Summary

Unmanned Aerial Vehicles (UAVs) have become a mainstay of modern day military operations,
such as surveillance and reconnaissance missions. Adversaries of the United States are fully
aware of this shift and are developing weapons and training to counter these unmanned assets.
Many of the counter-UAV weapons under development and testing require that a target lock be
maintained on the UAV for some minimum amount of time. By randomizing the flight pattern,
e.g., when conducting ISR missions, and limiting the time the UAV travels on any single flight
leg, we can minimize the vulnerability of these assets. To accomplish this randomization we
employ a Levy distribution function to determine the length of each search leg, while changes
in searcher heading are drawn from a uniform distribution. We model realistic flight limitations
using Dubins curves, which define the minimum distance path between two points of differ-
ent heading orientation given the minimum turn radius capability of the searcher. Regression
analysis of simulated search times is used to derive the expected coverage rate. We define a met-
ric, the probability of mission success, comprised of a time to target detection by the searcher
and a time to counter-targeting of the searcher by the adversary. A Bayesian update scheme
is applied to the search to incorporate imperfections in sensor performance, along with a loop-
ing search function. Should no target detection occur within a specified amount of time, the
searcher’s travel will be biased toward the area of highest target probability density. The culmi-
nation of this thesis is the development of a simulation model for analysis on the employment of
nondeterministic search patterns as a means to mitigate counter-targeting and counterdetection
threats.
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CHAPTER 1:
Introduction

1.1 Background
Unmanned aerial vehicles (UAVs) have become the mainstay of modern-day intelligence gath-
ering for military and government agencies worldwide. These assets provide valuable real-time
situational awareness while minimizing several of the risks associated with personnel in poten-
tially adversarial territories. A variety of mathematical models for searching such areas have
historically been applied to provide decision support for these information-gathering missions.
However, many search models and associated measures of performance address only the effec-
tiveness of the search and deal solely with the constraints of the searcher’s characteristics, such
as limited endurance or limited sensor performance.

Instead, the mission performance may require that the employed search model address addi-
tional concerns that are relevant to realistic mission scenarios, such as the need to operate in
unfriendly or clandestine environments and avoid counter-detection and/or counter-targeting.
The ability to encompass mission-relevant metrics in a holistic mathematical model, rather than
to construct individual models for different components of a complex mission, offers significant
benefits to decision makers who must assess the relevant trade-offs.

For example, although maximal area coverage is essential, as nations develop more advanced
air tracking and defense systems, the need for stealth by either platform or employment of
randomized flight patterns that incorporate unpredictability (to avoid detection and targeting
by the adversary) also increases, requiring a balance between search effectiveness and searcher
evasiveness. Threats from emerging technologies such as directed energy weapons [1, 2], as
well as conventional ones such as shoulder-launched rockets, pose potential danger to aerial
assets conducting surveillance or other stand-off missions.

In this study, we analyze the employment of a nondeterministic search pattern over a finite area
using randomly distributed leg lengths and heading angles. We are interested in the probability
of mission success, i.e., the ability of the searcher to discover a target located in the finite area
prior to being counter-targeted by the adversary.
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1.2 Research Objective
The focus of this thesis is the development of an analytic model and associated computer simu-
lation with which to analyze the area coverage and target detection capabilities of an unmanned
searcher conducting randomized search over a finite area. The effectiveness of such a search is
measured against the known efficiency of a continuous sweeping search by deriving equations
representing the probability of detecting a target uniformly distributed within the finite area, as
well as the expected time elapsed prior to the detection. Utilizing this estimated time to target
detection we apply assumptions regarding adversary targeting capabilities to formulate a prob-
ability of mission success, e.g., the probability that the time required for the searcher to detect
the target is less than the time required for an enemy to counter-target the searcher.

1.3 Literature Review
The field of robotic coverage and search has an extensive history, including substantial efforts
to optimize the coverage patterns for different objective functions such as minimum time or
coverage path, minimal overlap, increased robustness to localization errors, etc. [3–5]. The role
of randomized coverage and search patterns has also been explored, with studies ranging from
optimal random paths to traverse all nodes of a finite network, to random walks over infinitely
two-dimensional area [6–10]. Specifically, several studies have been conducted over the years
in an effort to determine the proper distribution of search leg lengths resulting in an efficient
random search, where efficiency is measured by the searcher’s ability to cover a large area in a
finite period of time [11,12]. The demonstration of this type of efficient random search in nature
has been the focus of multi-disciplinary efforts with animal behavior modeling, e.g., [13–17].

Viswanathan et al. recognized this efficiency in the natural foraging habits of animals, deter-
mining that several species exhibit Levy characteristics in their search patterns [18, 19]. Given
that the livelihood of these species depend on efficient search techniques for survival, the mim-
icking of these habits should translate to an efficient (if not optimal) search pattern for most
object search scenarios. Viswanathan et al. analyzed the search leg distances recorded dur-
ing a three-month observation of albatross (five albatross conducting nineteen foraging jour-
neys) [20]. Unlike what might be observed through demonstration of a random Gaussian or
Raleigh distribution, no well-defined variance was observed among the search leg distances.
Plots of the recorded data indicated a long-tailed power-law distribution of lengths correspond-
ing to Levy flight motions [18]. In particular, the observed distribution of flight lengths was

2



characterized by
P(ti)∼ t−µ

i , (1.1)

where ti is the time between landings, and µ represents the fractal dimension of the long-tailed
power-distribution with 1 < µ ≤ 3. The distribution converges to a Gaussian for µ > 3 and does
not correspond to a normalizable density function for µ ≤ 1. Histogram plots of the nineteen
individual foraging trips suggested an average µ ∼ 2.

Further works by Viswanathan et al. assert that there are several animal foraging patterns ob-
served in nature (albatross, honeybees, aphids, drosophila, etc.) which mimic a Levy flight
with µ ∼ 2. The authors credit these multiple observances of the Levy distribution in nature to
the fractal properties of the Levy search that lead to a large dispersion from the origin over a
finite time period. This characteristic is particularly beneficial for swarms or groups of N Levy
walkers versus N Brownian walkers [21]. The Levy walkers are able to cover a more widely
spread area and diffuse more quickly, thus limiting competition between individual searchers.
Conversely, Brownian searchers tend to remain clustered together for longer periods of time. In
summary, it is shown that due to the low probability of revisiting a previously searched area,
the Levy flight possesses an advantage over Brownian motion when the target density is sparse
and the targets are randomly distributed, but makes little difference in small areas of high target
density [18].

The authors’ extended analysis of the Levy search differentiates between destructive and non-
destructive search methods, the former being one in which an area is precluded from future
searches once it has been visited, the latter allowing for multiple visits to any given site. A
set of simulations is conducted in which the searcher is attributed a fixed search radius repre-
sentative of an animal’s visual range, conducting a continuous search while moving along the
Levy path [19]. If a target is detected within this visual range, the searcher can change direc-
tion and move directly to the target, eliminating the target from the search area. If no target is
detected within the visual range of the searcher, or if successful target elimination is achieved,
a random heading from a uniform distribution and a random search length from the power-tail
Levy distribution are drawn and the searcher moves along this new path until a target is ac-
quired or the end of that search leg is reached. Through comparison of the simulation results
to the foraging data collected on honeybees, deer, and wandering albatross, the authors affirm
the observance of µ ∼ 2 for any search dimension where there exists no a priori knowledge of
target location [18, 19].

3



Raposo et al. expand upon the work of Viswanathan et al. by adding a parameter, τ , representing
a regeneration time during which a visited site is not available for revisit. The authors show that
for any power-law tailed distribution (Equation 1.1), with the optimal exponent restricted to
1 < µopt ≤ 2, by relating the velocity of the forager, v, and the recovery time of the site, τ , such
that z = vτ

λ
, where λ is the average distance (based on a spatial Poisson distribution of target

location) between targets, the optimal search strategy is defined by µopt = 2+ 2
lnz +O

( 1
lnz

)
.

As τ approaches 0 (non-destructive limit), the best search strategy is observed with µopt ∼ 2.
This coincides with the conclusions of Viswanathan et al. As τ approaches infinity (destructive
limit), the best search strategy is observed using µopt → 1, suggesting upper and lower bounds
on the mean flight length for a Levy search pattern [22].

Calitoiu and Milici demonstrate that the Levy distribution exhibits characteristics advantageous
to groups or swarms of animals foraging over large areas [23]. The authors describe the ben-
efits of the Levy flight over the Brownian walk as being derived from the fact that the search
leg distances associated with Brownian motion are scaled to a set magnitude defined by the
searcher, where as the Levy flight lengths are a function of target spacing. This is observed in
nature through a species’ ability to adjust to changing environmental conditions and availabil-
ity of food/prey. The authors employ the Levy flight pattern to simulate destructive and non-
destructive searches using non-cooperative agents; searchers working independently to locate
targets in a common area with the constraint that two agents cannot occupy the same vicinity at
the same time. The authors draw a specific distinction between the utilization of a Levy flight
vice a Levy walk for the simulation. The term “Levy flight” is used to describe a pattern in
which the search is conducted only at the ends of each leg; searchers use a “move, stop and
search” technique. In the Levy walk, the searchers are continually able to detect a target using
a “move and search, stop” technique. For both the destructive and non-destructive simulations,
a shift parameter of µ = 2 is used. The Levy distribution searches are compared to searches
utilizing a step size equal to unity, consistent with Brownian motion. In both destructive and
non-destructive simulations the Levy searchers traverse distances farther from the origin. How-
ever, because of the non-continuous search characteristics exhibited during the Levy flight, the
Brownian searchers are able to search more total area. The results of these simulations infer that
a Levy distribution of search leg lengths results in a dispersion from the origin that is beneficial
in areas of low target density. The employment of a Levy walk vice Levy flight would further
increase the effectiveness of this search.

Each of the aforementioned works show that a Levy distribution of search leg lengths often
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results in a more rapid dispersion from the origin when compared to Gaussian-based Brownian
motion, leading to a more expanded area of coverage and less local competition between entities
searching as a group. It is this dynamic aspect of the Levy distribution that makes it an intriguing
candidate for use in randomization of a search pattern over a finite area.

While widely studied with regard to natural behaviors of animal species, the Levy distribution
is also the focus of multiple robotics-based search strategies, being applied to search leg lengths
of autonomous searchers attempting to located targets in a minimal duration of time [24, 25].
Lenagh and Dasgupta conduct simulations utilizing what they describe as linear Levy and
looped Levy search patterns (described shortly) employing multiple searchers to detect a single
target located within an unbound search area [26]. The linear Levy search employs search leg
distances drawn from the closed-form Levy distribution of Equation 1.2 and illustrated in Fig-
ure 1.1. The searcher travels these Levy lengths conducting a continuous search for the target,
consistent with the Levy walk described previously.

L(l j; µ,c) =
√

c
2π

e
−c

2(l j−µ)

(l j−µ)
3
2

(1.2)

Figure 1.1: Probability distribution for the closed-form Levy with shift parameter µ = 0. The smaller
the scaling parameter, c, the sharper the probability peak and greater chance of returning shorter lengths.

In this closed-form Levy distribution L(l j; µ,c), the variable µ represents the shift or location
parameter for the distribution of lengths for leg l j, defining the minimum length returned. The c
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represents the scaling parameter controlling the height of the curve, and thus the probability of
any particular length being returned. Figure 1.1 shows that for smaller values of c the probabil-
ity peak of the distribution is higher, such that the probability of obtaining a value close to the
parameter µ is greater [26]. The authors define the change in orientation of the searcher only to
occur at angles greater than π

2 from the current heading, thus the initial heading of the searcher is
random, drawn from the uniform distribution, U(0,2π), with subsequent turn directions defined
as π

2 +θ , where θ ∼U(0,π). The looped Levy search utilizes the same distributions; however,
if contact is not gained/held on any target after a finite time period, the searcher will return to
its origin (if no target information is retained) or to the area of last known target location (if
contact was held but subsequently lost) and recommence the search in a new random direction.
The searcher is equipped with a perfect sensor, such that if the target is within a distance less
than the sensor range from the searcher, the target is located. These simulations are conducted
in three phases, the first being search for a stationary target that has relocated to a spot some
distance from its last known location. The remaining phases involve localizing (phase two) and
tracking (phase three) of mobile targets. Each of these simulations is conducted for varying
values of parameters µ and c. The authors conclude that little difference exists between the
performance of the looped and linear Levy models while searching for stationary targets. The
functionality of the looped Levy to return to the last known target position limits the time the
searcher travels a path of zero target density, resulting in increased performance over the linear
Levy when searching for moving targets. Throughout the tracking phase the looped Levy search
demonstrates a timelier re-acquisition of a moving target after contact is lost, and for all simu-
lations, faster target detection occurs when the value of the shift parameter µ is set to equal the
initial target distance from the searcher (though this requires a priori knowledge of the target’s
location) [26]. This distribution function representing the Levy walk is the foundation of the
non-deterministic search developed in this thesis. The target locations are randomly selected
and unknown by the searcher, thus dictating the need for further analysis regarding the optimal
shift (µ) and scaling (c) parameter values.

Mantegna and Stanley explore the significance of Levy movements within bounded physical
systems, such as turbulent fluids or single molecules embedded in a solid, in which there exists
an unavoidable cutoff in distance traveled [27]. This research provides insight as the the effects
of conducting Levy-based searches within a bounded area of operations. The authors refer to
the random movement within systems of this type as truncated Levy flights and derive a mean
and variance for this truncated Levy distribution for which the mover is physically limited in
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distances it can move. Mantegna and Stanley conclude that, unlike the standard Levy, the dis-
tribution of this truncated Levy does converge to a Gaussian distribution (i.e., exhibits behavior
prescribed by the Central Limit Theorem) when the sample size exceeds 104 to 105.

As referenced, there have been several studies addressing the optimization of random search
patterns, i.e., a series of random straight line distances linked by random changes in direction.
The majority of these studies establish evidence that the rapid dispersion characteristic of the
Levy distribution provides the advantageous opportunity to achieve maximum area coverage
with minimal revisit time. These previous works provide the initial parameters for our model
and simulation. This thesis builds upon these studies by utilizing the closed-form Levy distri-
bution (Equation 1.2) to simulate and analyze the coverage ratio, that is, the area searched as a
function of time of flight, and probability of detection for a Levy walk pattern over a bounded
area. To model the realism of UAV movement and sensor capabilities, several other works are
reviewed.

In 1957, Lester Dubins proved that the shortest distance between two points in two-dimensional
space, each defined by a coordinate and heading, can be expressed as a single path configura-
tion of the set D = {CSC,CCC}, where C represents a curve of minimum turn radius and S

represents a straight line segment [28]. These can be specified further such that the short-
est path between the two points must consist of some path configuration D, where D ∈ D =

{RSL,RSR,LSL,LSR,RLR,LRL}, with R and L representing right and left turns, respectively.
By calculating the length of each of the three path segments, the optimal path, i.e., that with
the minimum overall distance, can be determined. This path is known today as “Dubins path.”
This work is extended in the development and analysis of Reeds car, a Dubins vehicle allowing
for both forward and backward motion, and the Dubins airplane, adding altitude as a functional
parameter in the determination of the Dubins path [29–32]. Parlangeli et al. further the work on
the Dubins model by introducing a path comprising various waypoints, each of which must be
visited, in order, by a mover bound by limited curvature [33].

Shkel and Lumelsky simplify the mathematics behind Dubins curves by proposing a method
which allows for the selection of the shortest Dubins path from the set D without having to
conduct the cumbersome segment length calculations performed by Dubins [34]. Using four
quadrants akin to that of a polar coordinate system, the authors distinguish classes of initial and
final heading configurations, realizing that not every path in D is feasible for every configuration
of headings. Further, these classes are divided into equivalency groups, which account for
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equal but opposite flight paths of orthogonal pairs of heading configurations. For example,
a searcher at an initial point with heading π

2 moving to a final point with heading 0 would
conduct a RSL flight path. Had the initial heading been −π

2 the searcher would travel the same
distance but opposite path, or LSR. The authors define sixteen classes arranged in a four-by-
four matrix of quadrants, with each row representing the quadrant of the initial heading and
each column representing the quadrant of the final heading. The intersection of the rows and
columns contain information regarding the appropriate Dubins path, eliminating several of the
previously required calculations. All calculations conducted by Shkel and Lumesky assume a
unit turn radius in order to simplify the results; thus the scalability of their equations must be
analyzed in order to be applied to this thesis, in which a non-unit or variable turn radius can be
set by the user of the simulation.

The operational characteristics of the sensor utilized by the searcher necessarily affects the per-
formance of the search strategy regardless of pattern employed. It is essential for operational
considerations to account for possible imperfections in sensor performance in order to obtain
a full appreciation for any search pattern efficiency. Several works address the significance of
these sensor imperfections, i.e., false and missed detections [35, 36]. Kress et al. established a
discretized search grid with each cell assigned a prior probability of containing a target and no
cell capable of housing more than one target [37]. They simulate a search utilizing probability
thresholds in order to determine if a cell is clear or contains a target. A Bayesian update process,
incorporating the probability of false alarms and missed detections, is used to determine poste-
rior probabilities of target location. The simulated UAV searchers used in this previous work are
non-adaptive, meaning that they can not adjust the predetermined flight path to accommodate
for the updated probabilities. To account for this, the searchers are allotted a specific number of
looks, each of which is used only if probability of a target being located in the visited cell does
not exceed the threshold for positive detection or clearance of the cell. Chung and Burdick also
incorporate a Bayesian update scheme into a discretized search pattern, applying a “decision-
making” process to searcher movement. The discrete Bayesian update process is combined
with a look-ahead search algorithm to bias the searcher movement toward a region within the
discretized area presenting the highest belief of target presence [38]. The incorporation of this
“decision making” process and Bayesian update of the search grid are utilized in this thesis to
implement a looped Levy search, directing the searcher to an area of highest target probability
if no target is found within a finite time period.
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1.4 Scope, Limitations, and Assumptions

The purpose of this thesis is the mathematical derivation and subsequent computer simulation
of a nondeterministic search algorithm that maximizes the area covered during the searcher’s
flight while limiting the probability of counter targeting. The scope of this thesis is limited to
answering the following questions. Can we:

• determine an optimal distribution of random flight leg distances and turn angles which
improves upon the coverage ratio achieved during a continuous random search, while at
the same time reducing the single leg counter-targeting exposure of the searcher?

• develop a tangible and effective means of measuring counter-targeting avoidance?
• develop a scalable nondeterministic search algorithm capable of implementation via any

unmanned system (whether aerial [UAV], ground [UGV], surface [USV] or subsurface
[UUV])?

• derive a single specific adjustment parameter that can scale the model for any of the above
search platforms?

• define and achieve an acceptable coverage ratio and probability of detection observable
over multiple simulated scenarios, and then use these observed characteristics of the
model to derive a probability of achieving a given coverage ratio or probability of de-
tection for various scenarios?

For the purposes of this research, it is assumed that the searchers are “on station” at the onset
of the search pattern (i.e., take-off and landing of the UAVs are not accounted for). The model
addresses the realistic flight limitations of a UAV by limiting the searcher to travel along Dubins
paths, with all heading changes limited to a minimum turn radius. Environmental effects such
as wind/current are assumed to have no effect on the flight trajectory of the searcher. Other than
directional changes, the motion characteristics of the searcher will remain fixed (i.e., no speed
or altitude changes) throughout the entirety of the search pattern. It is further assumed that the
search sensors are mounted on some form of gimbal device, such that changes in vehicle list
and trim that would otherwise shift the sensor footprint need not be modeled. With respect to
the search area, it is assumed that no obstacles or terrain obstructions exist that would interfere
with the path nor sensor of the searcher. When simulating multiple searchers, each unit is able
to maintain constant and perfect communications with all other units and the central controlling
station. Finally, it is assumed that at most one target exists per each discretized cell of the search
area.
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1.5 Contributions of the Thesis
The research accomplished during the development of this thesis is beneficial to the United
States military and other government agencies operating unmanned vehicles in support of in-
telligence, surveillance, and reconnaissance missions. The main contribution of this paper is
the development of a probabilistic model by which to analyze the trade offs present when using
an autonomous searcher to find a stationary target in minimal time while avoiding counter-
targeting by the adversary. We define a novel performance measure which captures this balance
between search effectiveness and evasiveness of the searcher, which can be used as a basis for
assessing search mission performance in bounded adversarial environments. We utilize a Levy
distribution in the generation of nondeterministic search paths, and highlight the insights arising
from the analysis of the search and counter-targeting performances.

Further, this thesis research represents the author’s selection as a recipient of the Space and
Naval Warfare Systems Center, Pacific (SSC Pacific) NPS Student Fellowship Program, which
enables interactions with SSC Pacific laboratory researchers, and also provides substantial
equipment and travel funds in support of enhancing the student’s research.

Additionally, a portion of the thesis work presented herein, describing the use of the Levy-
distributed search leg lengths with an instantaneously turning searcher, has been accepted via
peer-review for publication and presentation at the 2013 IEEE International Conference on
Robotics and Automation (ICRA) in Karlsruhe, Germany [39]. This conference represents a
flagship venue for dissemination of advanced research in the international robotics and automa-
tion communities.

1.6 Organization of the Thesis
The remainder of this thesis is organized as follows. In Chapter 2, we include a detailed defini-
tion of all parameters and assumptions utilized in the model and simulation. The derivation of
the analytic model to determine coverage ratio with respect to time over a finite search area is
addressed. Chapter 3 details the development and implementation of the computer simulation
based on the analytic model, to include the incorporation of Dubins paths, Bayesian probabil-
ity updates, and the looping functionality of the search. Chapter 4 analyzes the results of the
simulation in comparison to expected values calculated in Chapter 2. Sensitivity analysis is
performed on each of the adjustable input parameters of the model, in particular the shift and
scaling parameters of the Levy distribution and the size of the search area and sensor footprint.

10



In Chapter 5, the final conclusions are revealed, to include recommendations on the optimized
values of the model parameters required to achieve the desired balance of searcher coverage
and stealth. In this chapter we also address recommendations for follow-on studies with regard
to the Levy search pattern.
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CHAPTER 2:
Mathematical Formulation

This chapter describes the mathematical mechanisms and theory behind the Levy-based search
pattern that is the cornerstone of this research. The reasons for the establishment of a finite
search space to include the operational significance of the shape and size of the area are ad-
dressed. A detailed description of the searcher movement and sensor characteristics based on
parameters of existing real-world unmanned aerial craft is included. This chapter also describes
the implementation of a Bayesian updating scheme in which prior and posterior probabilities
of target presence are calculated based on sensor operating characteristics, contributing to the
efficiency of target detection.

2.1 Background
This research can best be summarized through description of a search scenario encountered
often during military operations. Assume an intelligence report is received by an operational
unit indicating that a high value target is, or recently was observed, conducting operations at
the location indicated in Figure 2.1. It is desired that the unit conduct a UAV search to confirm
presence of the target for facilitation of a possible strike mission. The unit is not to violate
the airspace of Country X, as indicated by the shaded area in the upper left. To further com-
plicate the situation, Country X has established several anti-UAV assets along its borders and
in the vicinity of the last known target position. Successful target detection requires that the
unmanned searcher execute an efficient search while maintaining enough randomness of flight
to avoid being counter-targeted and destroyed. A common measure of efficiency in search is
the coverage rate of the searcher, or how much of the area can be searched in a given amount of
time. In general, this rate, Ḟ(t), is a function of the speed and sensor footprint of the searcher,

Ḟ(t),
dF(t)

dt
= vw, (2.1)

where v is the searcher velocity and w is the search sweep width of the sensor [40]. The most
efficient search utilizes a sweeping pattern of area coverage as shown in Figure 2.2. Assuming
the searcher is equipped with a perfect sensor, meaning that any target located within the max-
imum range, rsensor, of the sensor is detected, the sweep patterns are such that no gap (missed
coverage) and no overlap (excess coverage) exists between sweeps. For this searcher with a
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Figure 2.1: The purpose of this research is to develop a nondeterministic search pattern capable of
efficiently locating a target while minimizing vulnerability to enemy attack.

perfect sensor conducting a continuous non-overlapping search of the total area, the coverage
ratio with respect to time, F(t), is defined as

F(t) =
vwt

Asearch
(2.2)

where t is time and Asearch is the total area to be searched. Thus, at any time t, F(t) represents
the percentage of Asearch searched. This continuous ideal search is an important benchmark
in that no segment of the search area is missed and no segment is searched more than once,
resulting in the efficient linear rise to total coverage shown in Figure 2.2.

(a) (b)
Figure 2.2: (a) An example of perfect non-overlapping complete search, commonly referred to as the
“lawnmower” or “spiral-out” pattern. (b) The resultant linear increase to total area coverage exhibited
by the “spiral-out” search pattern. From [41].
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In contrast to the continuous ideal search is the continuous random search pattern. Random
movement over the search area coupled with discrete “looks” results in an inefficient search
pattern albeit asymptotically complete. This search is often likened to dropping equally sized
pieces of confetti onto a surface, one at a time, until the entire surface is covered [40]. As with
the ideal search, the time to complete coverage is a time-based function of the searcher speed
and sweep width. However, because the movement over the search area is random, the potential
exists for revisit of any segment in the area, resulting in a logarithmic shape to the coverage
ratio over time. As more of the area is searched, the probability of a random movement to an
area not previously covered decreases and the coverage exhibits a slow and asymptotic rise with
“diminishing returns” to complete coverage. The equation for this continuous random coverage
ratio is defined as:

F(t) = 1− e−
vwt

Asearch , (2.3)

with vwt determining the size of the “confetti piece” uncovered with each “look” [40]. Illustra-
tions of this search pattern and the resulting exponential shape of the coverage ratio due to the
potential for revisit are shown in Figure 2.3.

(a) (b)
Figure 2.3: (a) An example of the continuous random search, commonly referred to as the “confetti
search.” (b) The resultant exponential increase to asymptotically complete coverage of the total area
exhibited by the “confetti search” pattern. From [42].

The continuous ideal search pattern demonstrates great exploration potential, efficiently cov-
ering the search area in a minimal amount of time. However, the employment of a perfect
sensor required to achieve coverage which exhibits no overlap and no excess is unrealistic when
translating to real-world applications. The continuous random search shows great evasiveness
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capability due to the unpredictable nature of the random movement, but the requirement to in-
stantaneously move about the search area is again not transferable to real-world applications.
The intent of this research is to design a search algorithm that promotes a balance between the
efficient exploration characteristics of the ideal search and the evasion potential of the searcher
as exhibited by the random pattern. This hybrid pattern can then be executed to perform the
mission objective: maximize the probability of the UAV searcher detecting the target prior to
being counter-targeted and destroyed by the anti-UAV assets (Figure 2.4).

Figure 2.4: The goal of this research is to define a realistic and realizable search pattern promoting the
efficacy of the ideal search (dotted) while minimizing the evasiveness of the searcher through incorpora-
tion of random movement.

We develop a model by which to quantify this expected probability of mission success for the
unmanned unit conducting a nondeterministic area search within some bounded search region.
We apply tangible measures of performance (MOP) to this search mission in order to quantify
the probability of successfully detecting a target. We define a time to target detection (TD) as the
time elapsed from the start of the search until positive detection of the target. This parameter is a
function of the searcher’s movement and sensor capabilities, the size of the search area, and the
random distributions of heading angle and transit leg length used to govern the trajectory. An
estimated time to counter-targeting (TC) is derived from models of intelligence assessments of
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adversarial technologies operating in and around the search area. This intelligence assessment
consists of the estimated time required for an anti-UAV weapons system to achieve a target
lock and subsequent firing solution on the searcher. TC is the time elapsed from the start of the
search until the time the searcher is destroyed due to traveling a predictable path, such as straight
flight legs, for a time exceeding the assessed enemy capability. Given that TC is a function of
the counter-targeting capacity of the adversary, and operationally beyond our control, we treat
it as a random variable, establishing distributions on counter-target times specific to various
levels of capability. The total probability of mission success can then be derived from these two
parameters, where mission performance is quantifiable, defined as the expected time to target
detection being less than the time for counter-targeting of the searcher:

P(TD < TC) Measure of Performance (2.4)

2.2 The Search Area and Searching Unit

2.2.1 Establishment of a Finite Search Area

This research utilizes a finite search area designed to represent a circular area of uncertainty
(AOU). An AOU is used in contact management situations when uncertain or time-late intelli-
gence regarding a target’s position is obtained, or when contact on a known target is lost. The
shape of the AOU is often circular or elliptical, with the boundaries defined by factors ranging
from confidence in the intelligence source to the attributes of the target itself. Often the radius
of this AOU is a function of the time late condition of the intelligence report and the maximum
transit speed of the target, with the boundary referred to as the farthest-on circle (FOC). In other
words, the size of the AOU is dependent on how far the target could have possibly traveled in
the time since the location was reported. In many cases, it is probable that the target is not
transiting at maximum capable speed on a single straight-line heading, and thus, the established
AOU is a reasonable and realistic upper bound on the search area. The size and shape of the
AOU may also be a product of the confidence in and fidelity of the intelligence report. Other
factors such as how long, i.e., time late, it takes to position a searcher in the area must also be
taken into account and can often increase the size of the AOU.

In many scenarios, the air space or ground territory where the search is conducted poses sen-
sitive territorial issues, requiring the establishment of a strict search boundary. To model this
operationally relevant constraint, we establish a boundary zone, shown in Figure 2.5. The width
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of this boundary zone is equivalent to twice the turn radius (2rturn) of the searcher. The maxi-
mum straight distance between the initial and final waypoints, (xo,yo) and (x f ,y f ), respectively,
of any search leg, will not exceed this artificial boundary, ensuring that the searcher will never
violate the actual area boundary. This constraint still enables the searcher to move over the
entirety of the search area. The parameters associated with the search area are summarized in
Table 2.1.

Figure 2.5: A boundary radius is established within the circular search area, ensuring that the searcher
does not violate the actual area boundary.

Variable Definition Units
Asearch total search area [meters2]
Rsearch radius of the circular search area [meters]
Rboundary effective radius of the search area, outside of which the UAV

must be turning
[meters]

Table 2.1: Variables associated with sensor operations

2.2.2 The Searcher
Searcher Movement
The searcher modeled throughout this research is intended to represent UAV technology cur-
rently in service, in particular, mid-sized platforms utilized by Special Forces and other forward
deployed personnel. These systems are often rugged, low-cost UAVs capable of short range
search and small payload delivery missions. Table 2.2 summarizes common operating parame-
ters exhibited by these mid-size platforms [43].
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Parameter Capability

Stall Speed 18 m/s (40 MPH)
Maximum Speed 36 m/s (80 MPH)
Cruise Speed 22 m/s (50 MPH)
Operational Maximum Range (still air) 320 km (200 miles)
Operational Endurance 4 hours

Table 2.2: General operating parameters of a mid-sized UAV, derived from [43, 44]

Sensor Footprint

It is assumed for the purposes of this research that the UAV is equipped with a sensor package
capable of distinguishing between the target and the environment in which it is operating. We
assume a circular sensor footprint for ease of calculations. The field of view (FOV), that is,
the extent of the target area visible during any instant in time, is assumed to be 30 degrees.
This is derived from the works and reports of the U.S. Army Research Center and the Defense
Technical Information Center and considered to be the average capability of small and mid-
sized UAVs [44]. The “on the ground” footprint of the sensor is determined using a height of eye
formula (Equation 2.5) based on the searcher altitude (alt) to calculate the sensor radius, rsensor,
and thus, area of the circular footprint (Equation 2.6), as shown in Figure 2.6 and Table 2.3. This
sensor range, rsensor, when extended along both sides perpendicular to the searcher’s trajectory,
determines the sweep width, w, referred to in the search theory examples of section 2.1.

rsensor =
1
2
(alt) tan(FOV ) (2.5)

Asensor = πr2
sensor (2.6)

To simplify the promulgation of searcher and target position, as well as calculations on distance
and probability of target presence, the search area is discretized into one meter by one meter
square cells. Assuming no intelligence suggesting otherwise, each of these discretized cells has
an equal opportunity of containing the target, assumed to be no larger than the one meter by one
meter cell. As the UAV searcher moves over the search area, the sensor footprint uncovers these
cells. For the purposes of this research, it is assumed that if the circular footprint of the searcher
overlaps any part of a grid cell, the cell is considered searched. This assumption is plausible
due to the large scale of the search area (generally of the magnitude 106 square meters) as
compared to the area of the searcher footprint (on the order of 102 square meters). The possible
over-accounting for the search of grid cells not completely covered by the sensor is therefore
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Figure 2.6: The search area uncovered during any discrete instant in time, Asensor, is a function of the
sensor radius, rsensor, as determined by the sensor field of view, FOV , and the altitude of the searcher,
alt.

negligible, yet greatly simplifies the calculations involved when computationally determining
which cells have been searched.

Modeling of Sensor Imperfections
The assumption of a perfect sensor is sufficient when determining the effectiveness of the
searcher movement pattern, but is not a feasible assumption for modeling real-world search
dynamics. In assuming a perfect “cookie cutter” sensor, any target that lies within the maxi-
mum range of the sensor is seen. Due to adjustability in sensor gains and possible limitations
in processing power for these mobile sensor systems, there exists, in reality, the tendency to
generate false contact reports or missed target detections. We denote the probability that a sen-
sor indicates the detection of a target when one is not present, generally referred to as a false
alarm, by the designation α . The probability that the sensor fails to indicate the presence of a
target when one is present, commonly referred to as a missed detection, is denoted β . A perfect
sensor is characterized by both α and β equal to zero.

Throughout this research, it is assumed that the target exists within the confines of the circular
search area; thus, the sum of the probabilities that the target exists in each grid cell must equal
one, i.e.,

n

∑
i=1

pi = 1, (2.7)

where pi is the probability that the target is present in cell i and n is the total number of grid
cells in the search area. In the absence of any intelligence information indicating that the target
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is in a certain part of the search area, the probability that the target is in each cell is initialized
as

pi =
1
n
, ∀i = 1, . . . ,n, (2.8)

to represent a uniform probability. To derive the probability that the target exists in each individ-
ual grid cell, these probabilities of false alarms and missed detections can be applied according
to a Bayesian updating scheme. Bayesian updates use the a priori probability that the target
exists in a cell, pi, and apply the α and β sensor characteristics to determine an a posteriori

probability the target exists. If a searcher detects a target in a given cell, the following update is
applied to that cell’s target probability [38]:

p
(

target
present

∣∣∣ “target
detected”

)
=

(1−β )pi

(α)(1− pi)+(1−β )pi
. (2.9)

As more detections occur in that cell, pi increases per Equation 2.9, until it exceeds a predefined
threshold probability, pcon f irm

i , at which point it can be deduced that the target is actually located
in cell i. In a similar manner, Equation 2.10 utilizes the lack of detection as the searcher passes
over a given cell to update pi, with the probability of target existence decreasing for that cell
until falling below pdeny

i :

p
(

target
present

∣∣∣ “target not
detected”

)
=

(β )pi

(1−α)(1− pi)+(β )pi
. (2.10)

For the purposes of this research, the target is assumed stationary; therefore, the overall prob-
ability that the target exists in the search area must remain at 100 percent. Thus, after the
Bayesian update is accomplished for each individual cell, that change in probability must be
distributed to all other cells in search area. In this way, the probability of target existence in
cells where detections occur increases and in cells with no detections decreases, regardless of
whether those cells have been physically searched yet. Table 2.3 summarizes the variables
associated with the operations of the sensor.

2.3 The Nondeterministic Search Pattern
2.3.1 Development of the Levy Search
The Levy-based search utilized throughout this thesis is a trajectory of the searcher comprising
piecewise linear segments of Levy-distributed lengths, as exhibited in numerous natural sys-
tems [18, 20, 21]. Such a model offers an initial mathematical basis for exploring the balance
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Variable Definition Units

FOV field of view of the UAV onboard sensor [degrees]
alt altitude of the searcher [meters]
rsensor sensor operating range of detection [meters]
Asensor circular area of sensor footprint [meters2]
α sensor probability of false alarm [none]
β sensor probability of missed detection [none]
pi current probability that a target is in a specific cell i [none]
pcon f irm

i probability above which a grid cell is confirmed to contain
a target

[none]

pdeny
i probability below which a grid cell is assumed clear of a

target
[none]

Table 2.3: Variables associated with sensor operations, as shown in Figure 2.6

between ideal search (for improved search effectiveness) and random search (for improved un-
predictability in motion). We refer to the relationship of these attributes as the efficacy versus
the evasiveness of the searcher, respectively. Upon initialization of the Levy search, the searcher
is located at the starting position, (xo,yo), the Cartesian equivalent of the latitude and longitude
representing the center of an area of uncertainty (AOU) in which it is desired to conduct the
search. A random heading of the jth iteration, γ j, is drawn from a uniform distribution on turn
angles from 0 to 2π . The individual length of the jth flight leg, l j, is drawn from the Levy
distribution shown in Figure 1.1 and formulated (repeating Equation 1.2) as

L(l j; µ,c) =
√

c
2π

e
−c

2(l j−µ)

(l j−µ)
3
2
. (2.11)

Recall that the scaling parameter, c, affects the uniformity of the distribution on lengths whereas
the shift parameter, µ , limits the shortest length sampled from the distribution. The heading
angle of each subsequent search leg, γ j+1, is determined by adding a random heading change
θ , again drawn from the uniform distribution from 0 to 2π , to the current searcher heading γ j,
as in Equation 2.12.

γ j+1 = γ j +θ , with θ ∼U(0,2π). (2.12)
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The searcher travels from (xo,yo) to (x f ,y f ), the point located length l j from the initial point
and calculated as

x f = xo + l j cos(γ j), (2.13)

y f = yo + l j sin(γ j). (2.14)

A summary of these parameters is shown in Table 2.4 and illustrated by Figure 2.7.

Variable Definition Units

l j length of single flight leg j, drawn from L(l j; µ,c) [meters]
γ j initial heading of searcher on leg j, drawn from U(0,2π) [radians]
θ change of heading from leg j to leg j+1 [radians]
γ j+1 heading on leg j+1, where γ j+1 = γ j +θ [radians]
v speed of searcher [meters/sec]
rturn turn radius of the searcher [meters]
tmax maximum endurance of the searcher [seconds]
(xo,yo) Cartesian position of searcher at beginning of search leg j
(x f ,y f ) Cartesian position of searcher at end of search leg j

Table 2.4: Variables associated with searcher characteristics

2.3.2 Bounded Levy Walk
The Levy walk has been shown to perform well while conducting a search over an infinitely
large area due to the rapid dispersion from the search origin, resulting in larger area coverage
over time [26]. In real-world operations, the search platform involved will have limited en-
durance capability and will generally be constrained to a finite area of operations defined by the
AOU or FOC referenced in Section 2.2.1. To maximize the potential for the searcher to locate
the target within these constraints, a reasonable estimate of target location must be known and
bounds placed on this operational search area. This research explores two methods to confine
the search pattern to the vicinity of the established AOU. The main intent of these methods
is preserve searcher endurance by limiting the amount of excess coverage (i.e., coverage ap-
plied to areas outside of the AOU), but these bounding behaviors can also ensure the searcher
is contained within the flight space cleared for the search, e.g., preventing a breach of territorial
boundaries in contested areas. We introduce these methods here, and address them in detail in
the following chapter.
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Figure 2.7: Illustration of the relevant parameters in determining the next search leg of the simulated
Levy flight.

Turn-around
We refer to the first of the boundary enforcement methods as the “turn-around” method. As
depicted in the basic description of the search pattern, a random leg length l j is drawn from the
Levy distribution function and applied to the flight path on a random heading α . After moving
that leg of the search path, the “turn-around” algorithm compares the current searcher location
to the center of the AOU. If it is determined that the searcher is beyond the bounds of the AOU,
a bias is placed on the random headings, θ , ensuring the searcher moves back toward the AOU
center. Once it is determined the searcher is back within the boundary of the search area the
bias is lifted and the random search continues. This method allows the searcher to temporarily
exit the search area, resulting in excess coverage and waste of precious endurance capacity and
mission performance, but preserves the underlying Levy distribution for leg lengths.

Look-ahead
The second version is referred to as the “look-ahead” method. Through implementation of this
method, a leg length and heading are drawn from the associated distributions and a calculation
is performed, prior to travel, to determine the endpoint of the new leg. If the new heading and
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angle combination places the searcher outside the bounds of the area, that l j is discarded and
both a new length and heading angle are drawn, repeatedly so until the sampling results in a
terminal position that is in-bounds.

2.3.3 Dubins Levy Walk
The Levy-based search algorithm uses an instantaneous change of direction to transition from
leg to leg. This is unrealistic when attempting to model the physical characteristics of a fixed
wing UAV, which must constantly be moving forward at speed greater than the designed stall
speed. We must account for the minimum turn radius capable by the UAV during a heading
change in order to obtain a realistic portrayal of the actual flight path and area covered during the
search. We model this realistic flight trajectory through the implementation of Dubins curves.

In 1957, Lester Dubins developed a system of equations to determine the optimal shortest path
of a constant mover between any two waypoints, regardless of the heading configuration at each
waypoint [28]. He derived that the path between these points could be broken down into three
component parts: a starting turn, a straight-line path or second turn, and a finishing turn. The
configuration of the three parts is based on the distance between the two points, the minimal
turn radius of the mover, and the initial and final heading of the mover at the waypoints. By
proving that each path can be broken down into these three path components, a total of six
different paths exist. The set of these paths is known as Dubins set, which we annotate as D. A
visualization of these configurations is shown in Figure 2.8. Each of the turns is denoted by an
R for right or L for left and the straight-line path is denoted as an S, such that the set of behaviors
is:

D= {RSR,LSL,RSL,LSR,RLR,LRL}. (2.15)

In 2001, Shkel and Lumelsky analyzed the complex trigonometry conducted by Dubins and
were able to categorize all Dubins paths between two points into Table 2.10, comprising six-
teen configurations of initial and final mover headings [34]. By imposing a constraint on the
mover that the distance between any two waypoints must be greater than four times the mini-
mum turn radius of the mover, the authors ensure the turn circles never overlap (Figure 2.8[e]
and [f]), eliminating the LRL and RLR sequences from the set of possible Dubins curve config-
urations. Depending on the quadrant associated with the initial and final angle headings (see
Figure 2.9),there only exists up to four possible Dubins paths between the points, and in several
cases, only one or two paths. These simplifications greatly reduce the number of calculations
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Figure 2.8: Graphical representation of the possible combinations of component parts of Dubins curves,
illustrating trajectory configurations: (a) RSR (b) LSL (c) RSL (d) LSR (e) RLR (f) LRL.

required to find the optimal (shortest) path between the two waypoints.

Figure 2.9: Shkel and Lumelsky determined that by limiting the distance between the two points to
no less than four times the turn radius and determining the quadrant of the initial ([xo,yo], α) and final
([x f ,y f ],β ) heading angles, the set of Dubins curves possible for each move is greatly simplified, derived
from [34].
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Figure 2.10: Decision table developed by Shkel and Lumelsky for determining the shortest path between
two points of known heading. From [34].

The initial and final heading configurations are determined using Figure 2.9. The distance
calculations in [34] are conducted for each of the possible Dubins curves referenced from Table
2.10. The shortest of these distances represents the length, d,of a nominal Dubins path of
configuration D ∈ D, and is the sum of each of the three component parts; sD

1 , the arc length
along the first turn, sD

2 , the length along the straight-line path, and sD
3 , the arc length along the

second turn [34], such that:
d = sD

1 + sD
2 + sD

3 , D ∈ D. (2.16)

In this research, we further simplify the calculations of optimal path configuration by ensuring
the heading of the searcher at the initial waypoint is always in the direction of the second
waypoint, such that the relative heading between the two points is zero. This constraint reduces
the determination of optimal Dubins path to be dependent only on the final heading of the
searcher, eliminating the need for a RSR or LSL turn configuration. In summary, the constraints
on heading and distance between the two points allows for the elimination of the RSR, LSL,
RLR, and LRL configurations from the set of possible nominal paths. The searcher utilized in
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this research only needs to conduct a LSR or RSL Dubins curve to achieve the nominal path
between the two waypoints.

Formulation of Dubins Curves
This section provides a brief review of the geometric derivation of Dubins curves and calcu-
lation of their associated path lengths, so as to facilitate their implementation in the proposed
simulation framework. A summary of all variables used in the calculation of Dubins curve
lengths is shown in Table 2.5.As mentioned previously, only the RSL and LSR configurations
are relevant to the presented study. We can begin with the computation of the path lengths for
the RSL configuration. The geometry for calculating the Dubins path is shown in Figure 2.11.

Variable Definition Units

(xo,yo) initial waypoint of search leg [none]
(x f ,y f ) final waypoint of search leg [none]
γ j initial heading of searcher [radians]
γ j+1 final heading of searcher [radians]
r minimum turn radius of the searcher [meters]
d length of Dubins curve traveled between two waypoints [meters]
D configuration of Dubins curve, where D ∈ {RSL,LSR} [none]
sD

1 distance traveled during initial turn segment [meters]
sD

2 distance traveled during straight-line segment [meters]
sD

3 distance traveled during final turn segment [meters]
(xD

ro,y
D
ro) pivot point (center) of turn circle for initial turn [none]

(xD
r f ,y

D
r f ) pivot point (center) of turn circle for final turn [none]

Table 2.5: Variables associated with the calculation of Dubins curves and their path lengths.

The searcher is assumed to have the same fixed turn radius for every heading change. This
results in the straight-line path being along a tangent line between two circles of equal radius.
There are only four possible tangent lines between any two circles, and because these circles
are of equal radius, the intersection of the inner tangents occurs at the midpoint between the
two circle centers; thus, referring to Figure 2.11, we can use the distance between the two pivot
points, (xRSL

ro ,yRSL
ro ) and (xRSL

r f ,yRSL
r f ), and the turn radius, rturn, to determine the straight-line

distance and the distance traveled along each curve.The following is a step-by-step derivation of
the geometry associated with the determination of Dubins distance using a RSL configuration.
The calculations for the LSR configuration are conducted in an analogous manner.

We first establish the initial and final turn pivot points, (xRSL
ro ,yRSL

ro ) and (xRSL
r f ,yRSL

r f ), as the offset
of π radians from the heading of the searcher at each point, at a distance of rturn from the Levy

28



Figure 2.11: Illustration showing the variables required in the calculation of the Dubins distance. This
example shows the geometry for a RSL configuration, but the process is similar for LSR.

waypoint (xo,yo) or (x f ,y f ), as shown in Figure 2.12. Having established the pivot points based
on the Dubins configuration being traveled, we can now determine the distance, dist, and the
offset,θo f f , between those pivots points for use in calculating the initial turn distance, sRSL

1 , and
the straight-line travel distance, sRSL

2 .

dist =
√

(xRSL
r f − xRSL

ro )2 +(yRSL
r f − yRSL

ro )2

θo f f = sin−1

(
yRSL

r f − yRSL
ro

dist

)

We next calculate the angle, C, between the intersection point of sD
2 and the segment of length

dist, and the tangent point of sD
2 on the first turn circle (k1 in Figure 2.11).

C = cos−1

(
rturn
dist

2

)

The searcher is assumed to maneuver with a constant turn radius for both the initial and final
turns, therefore, the angle between tangent point k1 and the pivot point of the final turn is
always π

2 . Having calculated the value of angles θo f f and C, we can now calculate B, the angle
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Figure 2.12: Illustration showing the configuration of pivot points at the initial and final waypoints of a
search leg. The location of the pivot point is at a distance rturn from the waypoint, offset π radians in the
appropriate direction.

associated with the arc length of sRSL
1 , as

B =
π

2
−C−θo f f

with the distance traveled in the initial turn simply being the length of the arc formed between
the initial waypoint (xo,yo) and the tangent point k1, or

sRSL
1 = Brturn. (2.17)

By a simple application of the Pythagorean theorem we calculate the straight-line distance as

sRSL
2 = 2

√(
dist

2

)2

− r2. (2.18)

The distance traveled during the second turn depends specifically on the desired final heading
of the searcher, β . Again, because rturn is equal for both initial and final turns, symmetry
exists within the geometry of the Dubins path. In particular the angle, B, and arc length, sRSL

1 ,
between the tangent point and point perpendicular to the pivot are of equal value in both turns,
simplifying the calculation of sRSL

3 .

sRSL
3 =

{
sRSL

1 + rturnβ , if 0≤ β ≤ π

2

sRSL
1 + rturn

[
π

2 + mod
(
β − π

2 ,2π
)]
, if π

2 < β ≤ π
(2.19)
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The distance traveled along the Dubins path is then the sum of the three component parts.

dRSL = sRSL
1 + sRSL

2 + sRSL
3 .

The calculations for the LSR configuration are conducted in an analogous manner. Note that
due to the turns occurring in opposite directions from the RSL, the ranges of β are different.
The resulting path length, dLSR = sLSR

1 +sLSR
2 +sLSR

3 , for the LSR Dubins path is summarized as:

sLSR
1 = Brturn, (2.20)

sLSR
2 = 2

√(
dist

2

)2

− r2
turn, (2.21)

sLSR
3 =

 sRSL
1 + rturn

[
π

2 + sin−1
(

yLSR
r f −y f

rturn

)]
, if π ≤ β ≤ 3π

2

sRSL
1 + r [2π−β ] , if 3π

2 < β ≤ 2π

(2.22)

The Dubins distance traveled between the waypoints accounts for the constraints on turn radius
observed in real-world flight, and results in a longer duration of travel than in the instantaneous
Levy search where no turn radius is implemented. It is necessary to account for this difference
in distance to ensure accurate calculation of time of flight, ultimately relating to an accurate
depiction of time to target detection, time to counter-targeting of the searcher, and coverage
rate. The implementation of the distance calculations in simulation is discussed in Chapter 3.
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CHAPTER 3:
Modeling and Simulation

The flight pattern modeled in this research is a constant speed trajectory comprising segment
lengths drawn from a Levy distribution. Such a model offers an initial mathematical basis for ex-
ploring the balance between linear ideal search (for improved search effectiveness) and random
search (for improved unpredictability in motion). This chapter details the functional process of
the computer simulation developed for this research. The general flow of the algorithm is repre-
sented by the block diagram in Figure 3.1and described in pseudo-code in Algorithm 3.1. The
assumptions applied during the simulation and a more detailed description of each supporting
function follow.

Figure 3.1: Block diagram showing the relationship and ordering of the various Matlab functions utilized
throughout execution of the LookAheadLevyFlight.m script.

3.1 Simulation Model Assumptions
Although effort is taken to ensure realistic simulation parameters, several assumptions are ap-
plied to the model, distinguishing the simplistic dynamics of this simulation from the employ-
ment of a physical searcher in a real-world environment.

The first assumption is that the searcher maintains a constant altitude and speed throughout
execution of the flight pattern. The sensor footprint at any discrete time step is based on the
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altitude of the searcher (c.f. Equation 2.5), and the area coverage with respect to time is a
function of searcher speed, as expressed in Equation 2.2. Holding these parameters constant at
values representative of the average speed and altitude exhibited during real-world operations
simplifies the coverage calculations and facilitates a dependence on elapsed flight time only.

The next assumption is that the sensor utilized by the searcher is mounted on some form of
gimbal device. Most fixed-wing aircraft require banking while turning, which may result in
skewing the shape and placement of a fixed sensor footprint. The realistic assumption of a
gimbal device which keeps the sensor pointed directly below the searcher at all times eliminates
the need for complicated calculations to determine actual sensor coverage shape and placement.

As discussed in detail in Chapter 2, the search grid is divided into one meter by one meter
discrete cells. These grid cells are small relative to the overall search area; thus any grid cell
that is located even partially within the sensor footprint is considered searched for the purposes
of this research. This simplification alleviates the need to perform calculations on the exact
flight path geometry to determine and track how much of an individual grid cell is searched
during each pass of the searcher.

The search area is circular in geometry and is assumed to contain no obstructions which pro-
hibit the flight of the searcher at its assigned altitude. In addition to supporting the assumption
of constant altitude, this eliminates the need to model or discuss command and control connec-
tivity issues between the searcher and its controlling station, which may otherwise arise due to
hindrances in line of sight.

Each iteration of the flight pattern begins at the center of the circular search area; the transit
from “home base” to the search area and back are not explicitly accounted for in this model.
The search area is assumed to be within reasonable transit distance from the controlling station
and does not affect the relative endurance of the UAV. What is not modeled is the UAV’s suscep-
tibility to counter-targeting during transit between the “home base” and the area of operations.

3.2 Developing the Levy Distribution
The use of Matlab facilitates existing access to common parametric distribution functions, such
as the uniform and exponential distributions. Unfortunately, the Levy distribution is not among
the list of common distributions provided in Matlab, and thus we can utilize the cumulative
distribution function of the Levy, given by Equation 3.1 [45]., to generate an array of search
leg lengths which can be accessed during the simulation. Pantaleo et al. discuss four different
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methods for parameterizing the Levy distribution for use in simulation, of which we choose the
transformation method to quantify the cumulative distribution function from the closed form
Levy defined in Section 1.3 [25, 26, 45].

F (x; µ,c) =
∫ x

−∞

L(l; µ,c)dl,

= er f c
(√

c
2(x−µ)

)
, (3.1)

where er f c(x) is the complementary error function, defined as

er f c(x) =
2√
π

∫
∞

x
e−t2

dt.

There are an infinite number of lengths which can be returned from the Levy distribution de-
pending on the accuracy to which we want the lengths represented. For simplicity we choose
to represent each length to the whole meter (1.0 m). More precise measurements of leg lengths
were attempted, up to 0.01 meters, but resulted in excessive simulation run times and memory
use, e.g. the Levy CDF using 1 m precision took 0.28 seconds to build, whereas the 0.01 m pre-
cision CDF took 27.8 seconds, and 0.001 m precision 276.4 seconds. The one meter precision
coincides with the discretization of the search area and, due to the relative size of the search
area, provides an accurate representation of coverage ability. We limit the searcher to opera-
tions within the circular search area, and thus a distance greater than twice the radius of that
area is never traveled on a single straight-line leg, which represents an upper bound on possible
leg lengths. To address a lower bound on feasible leg lengths, we note that the assumed imple-
mentation of Dubins curves to simulate realistic flight physics requires waypoints separated by
a minimum of four times the turn radius, although, in general, this minimum distance can be set
to zero [34]. We set the value of the shift parameter, µ , to this value to represent this minimum
distance. Although the transform algorithm incorporated here allows for the storage of varying
degrees of precision on Levy lengths, we calculate only the cumulative probabilities of lengths
within the defined range bound by the rounded values of µ to 2Rsearch, to limit the run time and
memory usage of the simulation when building the Levy CDF.

We apply each of these values to the Levy CDF by inputting an array, x, of lengths from µ to
Rsearch, the scaling parameter, c, and the shift parameter,µ , to the LevyGenerator.m function
and store the results in a CDF array. Each array index of the Levy CDF maps directly to the
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index of the original x array of lengths used to build the distribution. To draw a random Levy
length, a random variable u is drawn from a uniform distribution of zero to one, such that
u =U(0,1). The Levy CDF array is searched for this value u, and the index associated with the
value in the CDF closest to u is returned, representing the index in the original x array containing
the random Levy length, l j. This process is referred to as inverse transform sampling [46].

Figure 3.2 shows the results of this inverse transform sampling for various values of the scaling
parameter, c, as compared to the known graph of the Levy PDF. This method provides an
accurate distribution on the Levy lengths for use in the simulation.

Figure 3.2: Comparison of the known shape of the Levy PDF (a) with the results of the inverse transform
sampling technique implemented in Matlab for various scaling and shift parameters: (b) µ = 0, c = 0.5,
(c) µ = 0, c = 2.0, (d) µ = 0, c = 1.0

3.3 Restriction of the Searcher to a Finite Area
The searcher starts each leg of the flight at (xo,yo), initially assumed the center of the search area.
With the length of the search leg established, a simple polar distance calculation is conducted
to determine the final waypoint (x f ,y f ) on the current heading α per Equations 2.13 and 2.14.
If (x f ,y f ) is within the boundary of the circular search area, the searcher travels along that leg.
However, if traveling this (l j,α) combination results in a violation of the area boundary (i.e.,
outside Rboundary, c.f. Figure 2.7), an adjustment is made to the trajectory. We propose and
investigate two methods for conducting this adjustment.
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Turn-around Method
We refer to the first of the two heuristics as the turn-around method. The searcher travels the
entire length of each randomly drawn Levy leg regardless of the area bounds, which may result
in the searcher temporarily exiting the area. In this adaptive algorithm, the searcher’s position
with respect to the area boundary is inspected at each waypoint and, upon recognition of an out-
of-bounds condition, directs the searcher back towards the search area via a biased distribution
on the turn angle, θ . The search area is divided into four quadrants equivalent to that of the
Cartesian plane. Dependent upon which quadrant the searcher exceeds the search boundary, the
limits of the uniform angle distribution are collapsed to ensure that the next heading places the
searcher on a trajectory within ±45 degrees of the center of the search area. This artificial bias
on the heading angle is maintained until the searcher is recognized to be within the bounds of
the search area. A breakdown of the algorithm is shown in Algorithm 3.2.

By applying the bias to the heading angle, no restriction is imposed on the lengths of the flight
legs; thus the distribution of lengths in the flight path remains that of Equation 2.11. Preliminary
investigation shows that although the case-dependent heading bias ensures the searcher returns
to the finite area, the time spent outside of the search area cannot be easily predicted. This results
in large segments of search time where no additional area coverage occurs, in effect wasting the
searcher’s valuable flight time. Given this operational constraint of limited endurance time in
practical search missions, we choose to disregard the turn-around method for the remainder of
this study.

Look-ahead Method
We refer to the second method for addressing the bounded search area as the look-ahead

method. The searcher again starts at the center of the search area with random leg lengths
drawn from Equation 2.11 and random heading changes from the uniform distribution on θ .
Prior to completing a search leg, the length and angle of the subsequent leg are drawn and a cal-
culation conducted to ensure that transit from the end of the current search leg (l j) to the end of
the subsequent search leg (l j+1) will not place the searcher outside of the area boundary. If this
new length/angle combination results in a violation of the boundary by the searcher, the length
and angle are simply discarded and a new length and angle drawn. This process is repeated
until achieving a length/angle pair which meets the confinement requirements of the area. This
procedure is outlined in Algorithm 3.3.

The discarding of the lengths that would otherwise place the searcher outside the area boundary
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appears to modify the original probability distribution. The histogram of the leg lengths actually
traveled during execution of the look-ahead method is shown in Figure 3.3.

Figure 3.3: The probability histogram of Levy lengths applied to the look-ahead Levy search. The upper
inlay magnifies the lower values of l j to show the conformity to the Levy distribution. The lower inlay
magnifies the lower probability region, showing that the Levy tail is effectively cutoff for values near
twice the search radius, Rsearch = 6000.

We plot the CDF of the modified look-ahead Levy distribution versus the standard Levy dis-
tribution of Equation 3.1 and see that indeed, the containment process results in a more rapid
rise to maximum probability. The histogram of the look-ahead simulation runs in Figure 3.3(b)
shows that the general shape of the Levy is maintained, although there is a noticeable increase
in probability for the legs less than 2Rsearch, thus we enact the look-ahead containment method
throughout this research, with future efforts devoted to examining the effects of this probability
shift. The look-ahead method preserves precious search endurance as compared to the turn-

around method of containment, however the look-ahead is not without fault. The potential
exists for the searcher to require an infinite number of draws as the length and heading dis-
tributions are discarded due to violation of the boundary conditions. In real world operations
this could result in inadvertent violation of the boundary by a “runaway searcher” with no up-
dated course vector. As shown in Figure 3.1, we prevent this through implementation of a “stall
prevention” turn-around function, DubinsTurnAround.m, after 500 consecutive unsuccessful
length/angle combinations are drawn. This function simply implements a 5π

6 , or 150 degree,
change in heading angle along the minimum turn radius of the searcher. This value was chosen
to prevent the searcher becoming stuck in an infinite loop of 180 degree turns, representing a
“fail-safe” for real-world UAV operations.
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Figure 3.4: A plot of the CDF compiled from the lengths of the look-ahead Levy (solid) simulation
versus the standard Levy CDF (dashed) demonstrates the probability shift to shorter lengths.

3.4 Algorithm for Searcher Movement
3.4.1 Discrete Sensor Sampling
With the search leg vector determined through the method above, the movement of the searcher
is implemented in simulation through discrete steps. The searcher position is updated every
rsensor meters, where rsensor is the search radius of the sensor. After each position update, the
LevyDetection.m and LevyCoverage.m functions are run to determine the current operating
picture. Using this discrete method to determine the amount of area covered accounts for 96%
of the area that would have been covered through use of a continuous sweep, but saves a signif-
icant amount of simulation run time and processing power, as shown in Figure 3.5. A detailed
derivation of the calculations used to determine this coverage value can be found in Appendix D.

Figure 3.5: This graph shows the effects of varying the spacing between the discretized position updates
on the simulation runtime. As the spacing increases, the simulation runtime decreases exponentially.
By choosing a discretized spacing equal to the search radius, we achieve 96% of the coverage attained
through a continuous search for a fraction of the runtime cost.
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3.4.2 Movement Along the Flight Path

The implementation of Dubins curves is an important aspect to modeling real-world flight
physics throughout this simulation. Once a leg length, l j, is defined that meets the criteria set
forth in Section 2.3.2, the initial and final waypoints and headings are passed to the Dubins.m
function. Calculations are performed within this function to determine the optimal Dubins path
creating the shortest distance between (xo,yo) and (x f ,y f ). The mathematical derivation of the
Dubins calculations is addressed in Section 2.3.3 and the sequence of the Dubins.m function is
described in Algorithm 3.4.

DubinsLSR.m and DubinsRSL.m calculate the discretized waypoints on each flight leg. The
initial and final waypoints, (xo,yo) and (x f ,y f ), respectively, are passed to the appropriate func-
tion along with the segment lengths of the optimal path configuration as determined in Du-
bins.m. Depending on the path configuration, DubinsLSR.m or DubinsRSL.m generates an
array of intermediate waypoints along the Dubins path, each with a spacing of rsensor between,
as discussed in Section 3.4.1.

Once the waypoint array is returned to the LookAheadLevyFlight.m via Dubins.m and Du-
binsLSR.m or DubinRSL.m, the algorithm begins iterating the array and plotting the way-
points. The flight time of the searcher is incremented after every intermediate waypoint using
the distance between those waypoints,4d and the searcher speed, where

t f light = t f light +
4d
v

. (3.2)

As discussed in Section 3.4.1, we have defined the distance to be rsensor. However, we use 4d

here to account for instances where the distance remaining on a given leg is less than rsensor, as
accounted for in Algorithm 3.5.

In Chapter 2, we introduced TC, or the time the searcher can maneuver in the area before being
counter-targeted by the adversary. As stated, this time is related to intelligence assessments
of the technological capability, notably the time the enemy must maintain a target lock on the
searcher prior to realizing an adequate firing solution. For simplicity, we have assumed that this
target lock must be achieved during a straight-line path of the searcher; any change in speed
or heading results in the need to restart targeting efforts. This time to target lock, TLOCK , can
thus be converted into a critical distance, lcrit = TLOCKv, dependent on searcher speed which, if
exceeded, results in the searcher being counter-targeted.
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As the algorithm computes the waypoints, the total straight leg distance traveled on the flight
leg is tracked. If this total straight leg distance exceeds lcrit , the searcher is considered counter-
targeted, resulting in a mission failure. The flight time up to that waypoint is recorded as the
time to counter-targeting, TC, and the simulation is ended.

For each of the discretized leg waypoints, the existence of the target within the sensor radius
is checked and an update to the overall area coverage is performed. Upon reaching the last
coordinate in the waypoint array, a new length l j and heading change θ are drawn and the
process is repeated until target detection occurs, the searcher is counter-targeted, or the UAV
reaches maximum flight time.

3.4.3 Levy Detection
The LevyDetection.m function is divided into two algorithms, one for conducting a Bayesian
updated search of the area, the other for conducting the search through employment of a perfect
cookie cutter sensor. In the case of the Bayesian search, each sensor “look” into a grid cell re-
sults in a Bayesian update as discussed in Section 2.2.2. The sum of the probability mass falling
within the sensor footprint is updated according to Equations 2.9 and 2.10. The change in prob-
ability resulting from this a posteriori update is dispersed throughout the entire search area, as
changes in probability proportional to the existing, or a priori, probability in each cell. Based
on this update, a target detection occurs when the a posteriori probability in a cell exceeds a
detection confirmation threshold, pcon f irm

c . Over the duration of the search, the concentration
of probability mass is “pushed” to the vicinity of the target location until, eventually, the prob-
ability of a single grid cell exceeds pcon f irm

c and the search ends in a successful detection. The
Bayesian algorithm is also designed to account for sensor imperfection, such as probability of
missed detection, β , and probability of false alarm, α . The less perfect the sensor, as indicated
by higher values of α and β , the longer the time to target detection tends to be. The summary
process of the Bayesian update on detection is shown in Algorithm 3.6.

The second algorithm in the LevyDetection.m function is a perfect detection model to focus
the analysis on the search pattern itself, shown in Algorithm 3.7. In this algorithm, the target
location is continually compared to the current searcher location. If the distance between target
and searcher is less than the sensor range, rsensor, the target is detected. The user specifies the
type of detection algorithm to be used during the simulation initialization.
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3.4.4 Levy Loop
In conjunction with the Bayesian algorithm of the Levy detection function, the Levy loop func-
tion is an optional algorithm intended to decrease the time to target detection and complete
area coverage, which is implemented following the LevyDetection.m function, as shown in
Figure 3.1. This function is LevyLoop.m divides the updated probability matrix, output from
the Bayesian algorithm in LevyDetection.m, into equal sectors of size N by N cells, where N

is defined by the user during simulation initialization. Each of these sectors represents a lower
resolution probability mass function (computationally represented as a matrix) over the entire
search area.

If no target detection occurs prior to the expiration of a preset loop timer, which begins counting
down at the commencement of the search, a calculation is performed to determine which of the
sectors contains the highest probability mass. This highest probability sector becomes the target
destination for the searcher, with heading angles biased to force the searcher to the area, as
shown in Algorithm 3.8. When the algorithm determines that the searcher is within the vicinity
of the high probability area, as determined by the searcher crossing either the horizontal or
vertical bounds of the sector, the loop timer is reset and the searcher resumes the look-ahead

search.

3.4.5 Levy Coverage
The LevyCoverage.m function takes as an input the current waypoint of the searcher, just as
in the LevyDetection.m function. The function maintains a ˆRsearch× ˆRsearch coverage matrix,
where ˆRsearch is the whole number representation of the search area radius; the discretized
search area. Initially containing all “zeros”, each matrix block is flagged with a “one” if the
sensor footprint of the searcher reaches the representative coordinates on the search area. It
is assumed the sensor footprint is circular; thus only the matrix cells falling within a distance
rsensor from the searcher position are marked. For each waypoint, the number of ones in the
matrix is totaled and divided by the total number of cells falling within the Asearch, resulting in
the coverage ratio at the current time of flight, as described in Algorithm 3.4.5.

F(t) =
# matrix cells flagged at t f light

Asearch
(3.3)
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3.5 Graphical Display
The simulation is equipped with a graphical display that may be turned on or off as the user
desires. The display, a screen shot of which is shown in Figure 3.6, shows the current flight
trajectory of the searcher, a warning meter to indicate if the searcher is in danger of exceeding
the critical length, lcrit , and a plot of coverage ratio versus flight time. The flight trajectory plot
displays the circular search area as a black line, and the boundary area as a dotted black line.
The target location (unknown to the searcher) is denoted by an asterisk. The searcher is plotted
as a dark square surrounded by a lighter colored circle representing the sensor footprint. As the
searcher moves throughout the area the flight path history and area covered are maintained on
the plot.

Figure 3.6: Graphical display showing search pattern, coverage ratio, and a warning meter for proximity
to counter-targeting.

The lcrit warning meter in the upper right of the display gives a visual representation of the
probability of the searcher being counter-targeted. As the searcher travels down the straight-leg
path the meter begins to increase, as represented by a green horizontal bar graph which plots the
distance traveled on that leg in meters. As the distance traveled exceeds 75% of lcrit , the meter
turns yellow. There is no interactive functionality to maneuver the searcher, but it does give the
user a visual alert that the searcher may be on the verge of counter-targeting. If the straight-leg
distance exceeds lcrit , then the meter turns red and the simulation ends.

The bottom right of the display houses the plot of coverage ratio versus flight time. Each time
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LevyCoverage.m is run, the computed F(t) is plotted on this graph against the current time of
flight, in seconds.

This simulation model encompasses both a visual and mathematical representation of nonde-
terministic search performance. The graphical output can give the user a feel for the type of
coverage patterns evolving from such a search, whereas the mathematical output on times to
target detection and counter-targeting help establish a quantifiable measure on searcher perfor-
mance. In the next chapter we conduct cursory analysis on these measures of performance to
demonstrate the capabilities inherent to the simulation model.
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Algorithm 3.1 LookAheadLevyFlight.m
Build the Levy CDF using LevyGenerator.m
Initialize searcher position (xo,yo) and heading α , target position, critical length, and simu-
lation time
while Flight time < tmax do

Draw l j from Levy CDF using LevyLength.m and heading change θ from U(0,2π)
Calculate search leg endpoint

(
x f ,y f

)
and final heading β = α +θ

if
(
x f ,y f

)
does not exceed search area boundary then

Determine optimal path from (xo,yo) to
(
x f ,y f

)
using Dubins.m

while Waypoints remain on current leg do
if Straight-line leg distance exceeds critical length then

Searcher counter-targeted. MISSION FAIL
end if
if Target located via LevyDetection.m then

Target detection. MISSION SUCCESS
end if
Update F(t) using LevyCoverage.m
Increment flight time for distance traveled and move to next waypoint on current leg

end while
else

Determine turn around waypoints using DubinsTurnAround.m
while Waypoints remain in turn do

if Target located via LevyDetection.m then
Target detection. MISSION SUCCESS

end if
Update F(t) using LevyCoverage.m
Move to next waypoint in turn
Increment flight time for distance traveled and move to next waypoint on current leg

end while
α = α + 5π

6
end if
α = β

xo = x f
yo = y f

end while
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Algorithm 3.2 Levy search using the turn-around method
Initialize searcher position (xo,yo) and heading α

while t < tmax do
Draw l j from Levy CDF using LevyLength.m and heading change θ

Calculate search leg endpoint
(
x f ,y f

)
and final heading β = α +θ

Move searcher to
(
x f ,y f

)
if Searcher is outside of area boundary then

Calculate heading φ from (x f ,y f ) to search area center
Draw l j from Levy CDF using LevyLength.m
Draw θ from biased heading distribution U(−π

4 , π

4 )
Calculate search leg endpoint

(
x f ,y f

)
and final heading β = φ +θ

Move to (x f ,y f )
end if
Increment flight time for distance traveled and move to next waypoint on current leg

end while

Algorithm 3.3 Levy search using the look-ahead method
Initialize searcher position (xo,yo) and heading α

while t < tmax do
Draw l j from Levy CDF using LevyLength.m and heading change θ

Calculate search leg endpoint
(
x f ,y f

)
and final heading β = α +θ

while x2
f + y2

f > R2
boundary do

Draw l j from Levy CDF using LevyLength.m and heading change θ

Calculate search leg endpoint
(
x f ,y f

)
and final heading β = α +θ

end while
Move searcher to (x f ,y f )
Increment flight time for distance traveled and move to next waypoint on current leg

end while

Algorithm 3.4 Dubins.m
Input: l j,(xo,yo),α,(x f ,y f ),β
if α < β ≤ α +π then

Calculate sRSL
1 ,sRSL

2 ,sRSL
3

Determine the intermediate waypoints using DubinsRSL.m
else if α > β ≥ α−π then

Calculate sLSR
1 ,sLSR

2 ,sLSR
3

Determine the intermediate waypoints using DubinsLSR.m
end if
Intermediate waypoints returned to LookAheadLevyFlight.m for use in plotting track and
input to LevyDetection.m and LevyCoverage.m
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Algorithm 3.5 DubinsLSR.m and DubinsRSL.m, where D ∈ {LSR,RSL}
Input: sD

1 ,s
D
2 ,s

D
3 ,(xo,yo),α,(x f ,y f ),β ,rsensor

Initialize segment distance traveled, distance, to zero
angle = α± π

2 , dependent on D
Determine pivot point of initial turn, (xD

ro,y
D
ro)

while distance < sD
1 do

if sD
1 −distance≥ rsensor then
Calculate waypoints along initial turn arc of radius rturn at a spacing of rsensor

Store (xwaypoint ,ywaypoint) in intermediate waypoint array for return to Dubins.m
angle = angle ± rsensor

rturn
, dependent on D

distance = distance+ rsensor

else
Calculate final waypoint on initial turn arc at a spacing of sD

1 −distance
Store (xwaypoint ,ywaypoint) in intermediate waypoint array for return to Dubins.m

angle = angle ± sD
1−distance

rturn
, dependent on D

distance = distance+
(

sD
1 −distance

)
end if

end while
Initialize segment distance traveled, distance, to zero
angle = α± π

2 , dependent on D
while distance < sD

2 do
if sD

2 −distance≥ rsensor then
Calculate waypoints along straight-line segment of heading angle at a spacing of rsensor

Store (xwaypoint ,ywaypoint) in intermediate waypoint array
distance = distance+ rsensor

else
Calculate final waypoint on straight-line segment at a spacing of sD

2 −distance
Store (xwaypoint ,ywaypoint) in intermediate waypoint array

end if
end while
Initialize segment distance traveled, distance, to zero
Determine pivot point of final turn, (xD

r f ,y
D
r f )

while distance < sD
3 do

if sD
3 −distance≥ rsensor then
Calculate waypoints along final turn arc of radius rturn at a spacing of rsensor

Store (xwaypoint ,ywaypoint) in intermediate waypoint array
angle = angle ± rsensor

rturn
, dependent on D

distance = distance+ rsensor

else
Calculate final waypoint on final turn arc at a spacing of s33D−distance
Store (xwaypoint ,ywaypoint) in intermediate waypoint array
angle = β

distance = distance+
(

sD
3 −distance

)
end if

end while
Return intermediate waypoint array to Dubins.m
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Algorithm 3.6 Bayesian update algorithm incorporated in LevyDetection.m
Input: prob_density,α,β ,(xpos,ypos),rsensor
for Each cell c within rsensor of (xpos,ypos) do

psensor
prior = ∑c pc

end for
if (Target < rsensor from (xpos,ypos) AND random U(0,1) > β (no missed detection)) OR
(random U(0,1)< α (false detection)) then

Detection update : psensor
posterior =

(1−β )psensor
prior

(α)(1−psensor
prior )+(1−β )psensor

prior

else
Nondetection update : psensor

posterior =
(β )psensor

prior
(1−α)(1−psensor

prior )+(β )psensor
prior

end if
4p = psensor

posterior− psensor
prior

for All cells c within prob_density do
pc

posterior = pc
prior + pc

prior

(
4p

psensor
prior

)
,∀c within rsensor of (xpos,ypos)

pc
posterior = pc

prior + pc
prior

(
4p

psensor
prior

)
,∀c beyond rsensor from (xpos,ypos)

if pc
posterior > pc

con f irm then
Target is detected
TD = flight time
End simulation MISSION SUCCESS

end if
end for

Algorithm 3.7 Perfect cookie cutter sensor detection algorithm incorporated in LevyDetec-
tion.m

Searcher located at position (xpos,ypos)
Target located at position (xtarget ,ytarget)
if Distance between (xtarget ,ytarget) and (xpos,ypos) < rsensor then

Target is detected
TD = flight time
End simulation

end if
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Algorithm 3.8 LevyLoop.m
Input: sector_prob,α,(xpos,ypos)
Determine coordinates of search area sector containing highest probability mass,
(xsector,ysector)
Determine direction, γ , of (xsector,ysector) from current searcher position, (xpos,ypos)
if 0 < γ ≤ π

2 then
while xpos < xsector OR ypos < ysector do

Draw l j from LevyCDF using LevyLength.m
Draw θ from biased distribution, U(θ − π

9 ,θ + π

9 )
Move searcher distance l j on heading θ

end while
else if π

2 < γ ≤ π then
while xpos > xsector OR ypos < ysector do

Draw l j from LevyCDF using LevyLength.m
Draw θ from biased distribution, U(θ − π

9 ,θ + π

9 )
Move searcher distance l j on heading θ

end while
else if π < γ ≤ 3π

2 then
while xpos > xsector OR ypos > ysector do

Draw l j from LevyCDF using LevyLength.m
Draw θ from biased distribution, U(θ − π

9 ,θ + π

9 )
Move searcher distance l j on heading θ

end while
else

while xpos < xsector OR ypos > ysector do
Draw l j from LevyCDF using LevyLength.m
Draw θ from biased distribution, U(θ − π

9 ,θ + π

9 )
Move searcher distance l j on heading θ

end while
end if
Reset loop timer to tloop
Resume search defined in LookAheadLevyFlight.m
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Algorithm 3.9 LevyCoverage.m
Input: coverage_plot,(xpos,ypos) ,rsensor
Coverage cursor (xcoord,ycoord) set at coordinates (xwaypoint− rsensor,ywaypoint− rsensor)
while xcoord <= xpos + rsensor do

ycoord = ypos− rsensor
while ycoord <= ypos + rsensor do

if
√
(xpos− xcoord)2 +(ypos− ycoord)2)≤ rsensor then

Position (xcoord,ycoord) flagged as searched on coverage matrix
end if
ycoord = ycoord +1

end while
xcoord = xcoord +1

end while
Area covered = # of 1’s in coverage matrix

Total number of cells in search area
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CHAPTER 4:
Results, Analysis, and Experimentation

The purpose of this thesis is the development of a nondeterministic search pattern capable of
producing area coverage comparable to that of the perfect continuous search, while maintaining
a sufficient element of randomness conducive to avoiding counter-targeting of the searcher.
This chapter discusses the results and analysis of simulations performed using various input
parameters to the Levy distribution and area configuration to develop an understanding of the
time to detection of a target, captured by the coverage ratio, as well as the time until counter-
targeting, represented as the adversary’s (unknown) capability.

We first investigate the properties of the search model via an expression for the Levy search
coverage ratio, which is used to define describe the distribution on the time until the target
is detected. The inclusion of the counter-targeting element allows for simulation and calcu-
lation of the mission success performance, which is explored through sensitivity analysis on
the relevant parameters, such as the Levy scaling parameter, c, and the critical time until the
searcher is counter-targeted, TLOCK . Further discussion of the operational use of these insights
is developed, presenting capability versus vulnerability curves to be used for decision support.
To extend this work’s operational relevance, additional study relaxes the assumption of per-
fect sensors by allowing for false positive and false negative detections via a Bayesian search
framework. Finally, the chapter concludes with a description of live-fly field experiments con-
ducted at Camp Roberts employing the proposed nondeterministic search trajectory generation
approaches. Implementation using actual tactical UAVs in these actual experiments provide
proof-of-concept validation of the presented methods.

4.1 Probability of Mission Success
Incorporating the primary objective of this research to investigate the impact of the counter-
targeting capability of an adversary against a friendly searching UAV, we define a measure
of performance referred to as the probability of mission success. Plainly stated, this metric
quantifies the probability that the searcher finds the stationary target prior to being counter-
targeted by an enemy weapon system. Recall from Section 2.1 that we refer to the time elapsed
from the start of the search through target detection as TD, and the time elapsed from the start of
the search through the searcher being counter-targeted as TC. The probability of mission success
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is then represented as
P(TD < TC) . (4.1)

For the purpose of this thesis, we make a distinction between counter-targeting and counterde-
tection. We assume that the territory over which we are searching is under the influence of some
anti-access/area denial (A2AD) tactic. In other words, the adversary is aware of the searcher’s
presence in the area (assumed counterdetection), and makes efforts to prevent the searcher from
locating the target through the use of some anti-air asset (counter-targeting). This asset may
be a conventional weapon, such as a man-portable air defense system (MANPADS), requiring
unambiguous travel of the UAV in order for the user to obtain a sufficient target lock and effect
a hard kill. As countries make technological advances in anti-UAV weaponry, the probability
exists for increased use of directed energy weapons, requiring a finite amount of laser contact
time with the surface of the UAV in order to overheat sensitive electronics and effect a mission
kill. The capability to fire may even be limited by an adversary’s doctrine, requiring a finite
amount of time or specific number of maneuvers by the targeted UAV before a firing solution
is considered valid. Recall also from Section 3.4.2, we make the assumption that this finite
amount of time, annotated TLOCK , is an intelligence assessment of enemy capability, and repre-
sents a random variable with a prescribed probability function. This TLOCK is used to determine
the maximum straight-line distance, lcrit , that can be traveled by the searcher prior to being
counter-targeted.

4.2 Determining Coverage Ratio
Recall from Chapter 2 that the coverage ratio is the amount of search area that is uncovered by
the searcher as a function of time. As discussed in Section 2.1, the continuous perfect search
results in a linear increase to complete coverage, where as the continuous random search results
in a logarithmic rise to complete coverage due to the propensity for repeated searches over
the same grid cell. We compare the performance of the look-ahead Levy search developed in
this research to these search pattern benchmarks. The discretization of the search area and the
uniform distribution on the location of the single target allow us to use the coverage ratio as a
measure of performance for the estimated time to target detection.

The simulation model is run using the searcher parameters shown in Table 4.1 to determine the
estimated time required to search the entire area. The results of a single run of the simulation,
illustrated in Figure 4.1, reveals that in the early stages of the search the coverage rate follows
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that of the continuous ideal searcher and is nearly linear. Note that there are small increments
of time which the search algorithm produces results better than what we have described as
the “perfect” coverage. This is due to imperfections in the search algorithm caused by the
discretization of the search space, and over time has minimal impact on the search results. As
the search progresses, the probability of searching grid cells which have already been uncovered
increases, and the effects of double coverage cause a more logarithmic shape to the curve,
slowing the coverage rate.

Variable Value Units

v 25 [meters/sec]
c 0.5 [none]
µ 200 [meters]
Rsearch 6000 [meters]
rsensor 161 [meters]

Table 4.1: Input parameters to simulation runs used to evaluate coverage rate.

Figure 4.1: A single run of the simulation model shows that during the early stages of the search,
a coverage rate similar to that of the continuous ideal searcher is achieved. However, as more area
is uncovered, the randomness of the pattern causes the searcher to double back over areas previously
searched, resulting in an logarithmic shape to the curve.

Given the absence of a closed-form expression for coverage ratio, F(t), the simulation is exe-
cuted n = 1000 times using the same parameters, with the objective of using regression analysis
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to determine an expression for the (expected) area coverage as a function of time from these
runs. We conduct a regression analysis on the data to construct a metamodel, denoted F̂(t), to
approximate the coverage as a function of time. Noting that the shape of the expected coverate
ratio mimics a logarithmic rise to complete coverage, similar to that of the random search de-
scribed in Section 2.1, and so we choose the random search equation as the desired parametric
form.

To conduct this analysis, we first transform the parametric coverage equation (Equation 2.3)
into linear form to allow for use of Microsoft Excel’s Data Analysis package.

F(t) = 1− e−λ t

− log(1−F(t)) = λ t

We then convert the coverage values obtained from the simulation runs into this form, by taking
the natural logarithm of one minus the simulated values. A regression is run with this calculated
log value as the dependent variable, and the simulated time observations as the independent
variable. The regressor coefficients are shown in the final coverage ratio equation, Equation 4.2.

F̂(t) = 1− e−(0.0000813t+0.035178). (4.2)

The statistical results output from Microsoft Excel are summarized in Table 4.2, and the plot
of the fitted regression values are plotted against the mean simulated coverage values in Figure
4.2.

The coefficients determined from the regression analysis result in a good statistical fit, as indi-
cated by the p-value and R-squared values in the output file. We note that in the random search
case, for the given parameter values, the equivalent coefficient (i.e., the coverage rate) is com-
puted to be vw

Asearch
= 7.12× 10−5, which is of the same order of magnitude as the fitted Levy

coverage rate. However, attempts at further analysis of the regression coefficients does not offer
insight as to the relation between the coverage ratio and the physical attributes of the searcher or
search area. Further, using this expression for the coverage ratio as an estimate for time to target
detection does not account for the possibility that the searcher is actively counter-targeted.
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Table 4.2: Regression output from Excel Data Analysis tool. The low p-value and high R-squared values
indicate the goodness of fit to the coverage rate.

4.3 Incorporating Counter-Targeting
In order to facilitate investigation of the impact of the adversary’s ability to target the searcher,
numerous simulation studies are performed that include variation on parameters relevant to
both the Levy-based searcher and the enemy’s targeting capability. For the initial studies, we
consider values of searcher speed, v, and sensor sweep (half) width, rsensor, to be comparable
to those exhibited in an average mid-sized UAV flying at a 600 meter altitude with a 30◦ sensor
field-of-view (c.f. Figure 2.6). Further, the Levy shift parameter, µ , is held constant and dictated
by the simplifying assumptions of the Dubins algorithm discussed in Section 2.3.3. The target
is uniformly randomly positioned in the circular search area.

Variable Value Units

TLOCK 90 [seconds]
v 25 [meters/sec]
c { 0.2, 0.5, 1.0, 3.0 } [none]
µ 200 [meters]
Rsearch {3000, 6000, 12000} [meters]
rsensor 161 [meters]

Table 4.3: Input parameters to simulation runs measuring probability of mission success against an
anti-UAV asset with a TLOCK capability of 90 seconds.

Each execution of the simulation continues until one of three possible end states is reached:
either the target is detected, the searcher is counter-targeted, or the endurance of the searcher
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Figure 4.2: Plot of the mean coverage results from the n = 1000 simulation runs using the parameters in
Table 4.1. The fitted regression curve is plotted for comparison.

times out. The first condition, a target detection, is recorded as a mission success, whereas
the latter two conditions, either counter-targeting of the searcher or exceeding of the searcher
endurance, registers a mission failure.

The initial numerical study explores variations in controllable parameters, namely those that
could potentially be dictated by the UAV commander, to identify the impact of the size of the
search area as well as the scaling parameter of the chosen Levy distribution. In particular, given
previous works studying Levy flights on the infinite plane, the effect of the finite search area
merits investigation. The time necessary to achieve target lock is held constant at TLOCK = 90
seconds, which is a representative duration that assumes perfect intelligence of the adversary’s
anti-air targeting capability. The simulation model is run n = 1,000 times for each of several
different parameter combinations, derived from the values shown in Table 4.3. The results of
these simulations are summarized in Table 4.4.

Plots of the probability of mission success versus the search area size and magnitude of the
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c Rsearch E[TD] E[TC] P(Success)
[meters] [minutes] [minutes]

0.2 3000 56.2 65.5 0.53
0.2 6000 87.5 15.1 0.04
0.2 12000 23.3 26.4 0.02
0.5 3000 65.2 76.3 0.41
0.5 6000 62.2 39 0.03
0.5 12000 N/A 26.5 0.00
1.0 3000 34.1 41.1 0.40
1.0 6000 3.3 9.8 0.05
1.0 12000 16.9 14.8 0.01
3.0 3000 26.8 30.4 0.29
3.0 6000 4.5 7.5 0.07
3.0 12000 9.7 9.6 0.01

Table 4.4: Results of n = 1000 simulation runs against an anti-UAV asset with a TLOCK of 90 sec-
onds. Mission success is achieved upon target detection, with mission failure occurring if the searcher
is counter-targeted.

scaling parameter are shown in Figure 4.3. These graphs indicate that as the search area radius,
Rsearch, is increased for a given scaling parameter, c, there is an exponentially detrimental effect
on the probability of mission success. In contrast, when TLOCK is known and constant (though,
in reality, this is a random variable), changes of c for a given Rsearch have much less effect on the
probability of mission success. Based on these results, we focus the next series of simulations
on the relationship between TLOCK and Rsearch to identify the sensitivity of mission success
on these parameters, which may provide further insights into the viability of future theoretical
coverage models of Levy walks in finite areas.

We conduct n = 100 replications of each experimental design point, varying values for Rsearch

and TLOCK , with a fixed value of c = 0.5. The remaining search parameters are consistent with
those in Table 4.3. The results of these simulations are presented in Table 4.5 and Figure 4.4.

The results of the simulations focusing on the relationship between Rsearch and TLOCK again
indicate that Rsearch has a more dramatic effect on the probability of mission success. A pairs
plot of the data is shown in Figure 4.5. The first item to note on this plot is that as the crit-
ical length increases, meaning a longer duration of TLOCK , the probability of mission success
increases. An increase in TLOCK simply means that the searcher could fly straighter longer (i.e.,
lcrit is longer), which was, for this set of simulations, controlled by holding the Levy scaling
parameter constant for a consistent probability distribution on the Levy search legs.
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Figure 4.3: (a) Plot showing the effect on mission success of an increase in Rsearch, given scaling param-
eter, c, and TLOCK . (b) Plot showing the effect on mission success of an increase in scaling parameter, c,
given Rsearch and TLOCK . Changes in Rsearch have a greater effect on the probability of mission success.

Figure 4.4: (a) Plot of probability of mission success versus search area radius for a given TLOCK . (b)
Plot of the probability of mission success versus TLOCK for a given search radius.

Further, the probability of mission success decreases in an exponential manner as the radius of
the search area increases. This is partly imposed by the operating conditions of the simulated
searcher. By confining the searcher to a finite area, the Levy distribution on leg lengths is
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TLOCK Rsearch E[TD] E[TC] P(Success)
[meters] [minutes] [minutes]

30 1000 1.7 4.6 0.87
30 2000 3.2 4.5 0.35
30 3000 6.0 3.8 0.09
30 9000 N/A 2.8 0.00
60 1000 2.4 1.2 0.98
60 2000 7.5 16.9 0.64
60 6000 14.4 6.5 0.01
60 9000 1.3 4.5 0.01
90 1000 3.4 0 1.00
90 2000 14.9 14.3 0.90
90 3000 18.4 17.5 0.43
180 1000 3.5 N/A 1.00
180 2000 18.7 N/A 1.00
180 3000 43.2 56.1 0.95
180 5000 35.0 61.1 0.36

Table 4.5: Sample of the results of n = 100 simulation runs against an anti-UAV asset with variations
on TLOCK and Rsearch for constant Levy distribution parameters. Mission success is achieved upon target
detection, with mission failure occurring if the searcher is counter-targeted. Parameters leading to a
higher probability of mission success than mission failure are bold-faced.

effectively cut off at twice the area radius, as discussed in Section 2.3.2. As Rsearch is increased
for a defined distribution on leg lengths (constant c), more of that distribution is “exposed,”
increasing the overall possibility that a search leg exceeding lcrit is flown.

4.4 Providing Decision Support
Given the insights provided by the numerical studies, we can further develop and easily con-
struct reference diagrams that can provide decision support to commanders assessing the search
capability versus asset vulnerability trade off in conducting associated surveillance missions.

The simulation developed throughout this research is useful in that it can quantify measures of
searcher performance given a concise set of operating parameters. We conduct further simula-
tions, separating TD and TC, in order to determine an analytic means for prediction of searcher
performance through regression of the simulation results. The intent is to separately measure
searcher performance with respect to target detection time, based on searcher movement and
sensor capability, and counter-targeting time, based on adversary capability and searcher move-
ment, then realte their statistics to each other to determine an overall probability of mission
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Figure 4.5: A pairs plot of the data is generated in R to assist in quantifying the relationship between the
search area size, target lock time, and the probability of mission success.

success.

4.4.1 Operational Viability of Nondeterministic Search Patterns
As a preliminary step to first convey tactical relevance of nondeterministic search patterns as
proposed by this work, we compare a nominal study of the Levy-based search with the expected
time to detection performance for idealized search. To generate a working model of the Levy-
based coverage, the simulation is executed for n = 10,000 replications. For these studies, the
counter-targeting capability of the enemy is disabled in the simulation, such that the search
progresses until the stationary target is found. This set of simulations employs the same values
for searcher speed and sensor capabilities as shown in Table 4.3, with Rsearch at the 6000-meter
level, derived from the maximum area able to be uncovered by the same searcher performing a
continuous ideal (i.e., non-overlapping) search. The shift parameter of the Levy distribution, µ ,
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is again set at four times the turn radiusto facilitate the use of the Dubins path algorithms, and
Levy scaling parameter, c, is set to 0.5. A histogram on the times to target detection is presented
in Figure 4.6.

Figure 4.6: Histogram on time to target detection, TD, resulting from n= 10,000 simulation runs without
enemy counter-targeting capability. The dark line function represents an exponential regression fit on
the distribution.

We conduct a regression analysis on the distribution of these results, applying an exponential
fit to model this probability density function on the time to (first) target detection for the given
search scenario parameters and noting the assumption of the “cookie-cutter” detection model.
The resulting fitted model for the probability distribution is given by:

P(TD = t) = e−0.00009095t . (4.3)

This regression fit is represented by the dark line in Figure 4.6. Having constructed a metamodel
for the probability distribution function for this set of searcher parameters, we can compute the
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estimated time to target detection, E[TD].

E[TD] =
∫

∞

−∞

t f (t)dt (4.4)

=
∫

∞

0
t e−0.00009095t dt

= 3.1 hours.

On average, utilizing the parameters established for this set of simulations and ignoring any
counter-targeting capability of the enemy, we expect the target to be detected in 3.1 hours.
For comparison, we calculate TD for a deterministic “spiral-out” search pattern illustrated in
Figure 4.7. This pattern is a variation of the perfect “lawnmower” search pattern described in
Section 2.1, with the searcher beginning at the center of the search area and conducting straight-
line search legs marked by 90◦ turns, moving outwards from the origin until the entire search
area is cleared. The spiraling searcher employed in this comparison is assigned the same sensor

Figure 4.7: A variation of the “lawnmower” search discussed in Section 2.1, the “spiral-out” search
begins at the origin and conducts straight-leg, predictable, non-overlapping sweeps toward the search
boundary edge.

and speed characteristics as the searcher in the Levy-based search example. In this systematic
search pattern, the time to target detection can be explicitly computed (given target location)
using the searcher speed and the sum of the straight-line distances traveled before the target is
within range of the sensor. Table 4.6 shows the deterministic time to detection for targets placed
at various distances from the origin.
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Target distance from origin Ideal TD
[meters] [hours]

1000 0.2
2000 0.6
3000 1.1
4000 1.9
5000 2.9
6000 4.1

Table 4.6: Times to target detection utilizing a deterministic “spiral-out” search, dependent on distance
of the target from the beginning of the search.

The E[TD] of 3.1 hours calculated from the simulation results is within an acceptable magnitude
for comparison to this deterministic method of search. These results indicate that the detection
performance of the Levy-based search pattern is comparable to that of the continuous search
pattern.

4.4.2 Estimating time to counter-targeting, TC
To now provide guidance or “rules of thumb” based on the impact of counter-targeting, we
can revisit the Levy-based search simulation with varying values of TLOCK . The same searcher
parameters as previously used (displayed in Table 4.7), are applied to n = 1000 replications
of the simulation. To specifically investigate TC, this set of simulations is conducted with no
target present in the search area, such that the search progresses until a straight-line leg length
exceeding lcrit is flown, resulting in the searcher being counter-targeted.

Variable Value Units

TLOCK {30,60,90,180} [seconds]
v 25 [meters/sec]
c 0.5 [none]
µ 200 [meters]
Rsearch 6000 [meters]
rsensor 161 [meters]

Table 4.7: Input parameters for simulation runs to assess TD and TC.

Figure 4.8 shows the cumulative probability of the searcher being counter-targeted for each
simulated value of TLOCK , scaled to the upper 20% of the probability density to better display
the results. This graph represents the probability that counter-targeting of the searcher occurs at
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or before time t for a given TLOCK . We can use this cumulative distribution graph to determine
a probability of mission success.

Figure 4.8: This summary plot of the cumulative distribution functions for varying values of target lock
time (n = 1000) can be used to determine a measure of the probability of mission success.

As an example, we plot the expected time to target detection, E[TD] calculated in Equation 4.4,
against the cumulative probability of counter-targeting versus an anti-UAV asset with a TLOCK =

180 seconds. We can read off a surrogate measure of the probability of mission success (c.f.
Equation 4.1) by using the expected time to detection, which is known a priori by the mission
commander, since the search parameters are nominally dictated by the search platform:

P(E[TD]< TC) = 1−P(TC ≥ E[TD])

Using E[TD] = 3.1 hours, we can estimate, based on the expected value graphs of the probability
of counter-targeting (Figure 4.8), that the probability of mission success is 1− 0.86 = 0.14 or
14%.

Referring back to Table 4.5, for a TLOCK of 180 seconds, the expected probability of mission
success in a search area of 6000 meter radius is 20%. As expected, the two methods to determine
this measure of performance produce fairly comparable results, and as such, provide the mission
commander a means to quantify the probability of mission success for a given set of searcher
and search area parameters.
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4.5 Field Experimentation
In this thesis research, we leveraged unique opportunities to conduct real-world flight testing of
the Levy-based search algorithm in live-fly contexts. As part of the SECNAV’s initiative for the
Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) [47] and
the Naval Postgraduate School’s Advanced Robotic Systems Engineering Laboratory (AR-
SENL), live-fly field experimentation was conducted at McMillian Airfield, Camp Roberts, CA.
The demonstration of the search pattern was conducted as part of a multi-UAV search experi-
ment during the 13-2 Joint Inter-agency Field Experimentation (JIFX) events, an effort by the
Naval Postgraduate School to explore capability gap solutions and new technologies in support
of the operational needs homeland defense through discovery, exploration, and experimentation.

We implement functionality in LookAheadLevyFlight.m to store the major Levy waypoints
traversed during the simulated search in Cartesian coordinate form. These “x” and “y” co-
ordinates are input to LevytoLatLon.m, along with a desired starting latitude and longitude
representing the center of the search area. LevytoLatLon.m iterates the Levy waypoint array
and converts the distance between each Cartesian waypoint to a Great Circle distance, return-
ing the coinciding latitude and longitude points in an “.fpf” file format for uploading into the
Procerus Virtual Cockpit (VC) ground control station software. The waypoints in VC are trans-
mitted to the Procerus Unicorn UAV employed during these flight experiments, shown in Figure
4.9.

Figure 4.10 shows the straight-line path between the major Levy waypoints generated during
one run of the simulation model. McMillan Airfield is shown to the east of the established
search area bound within the white dashed circle. The input parameters to each of the four UAV
flights are listed in Table 4.8. The altitudes of the UAVs were staggered from 300 to 600 meters
to ensure altitude deconfliction for safety of flight.

Variable Value Units

Rsearch 1200 [meters]
c 0.5 [none]
µ 200 [meters]
v 15 [m/s]

Table 4.8: Searcher parameters established for real-world flight during multi-UAV JIFX demonstration.

Figure 4.11 shows the actual flight path taken from the searcher. Appendix C details the pro-
cedure for recovering telemetry data from the Procerus software and converting to a .kml file
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Figure 4.9: Procerus Unicorn UAV [48] used in multi-UAV look-ahead Levy search demonstration
conducted at 13-2 JIFX in February, 2013.

for display in Google Earth. The UAV executes flight trajectories with bounded curvature, con-
sistent with the Dubins curves generated by our simulation, as shown in the magnified flight
segment displayed in Figure 4.12. However, forcing the UAV to a Dubins flight path requires
an excessive number of waypoints for any significant duration of flight. The overlay of the
actual flight trajectory compared to the Dubins path generated by LookAheadLevyFlight.m is
sufficient evidence that our simulation adequately models the flight physics of a small UAV.

During the demonstration, ARSENL members were able to employ four UAVs simultaneously
conducting the look-ahead Levy search. The flight trajectories are illustrated and distinguished
by color in Figure 4.13. This experiment represents significant accomplishments in implemen-
tation and system integration, and also highlights the apparent advantage of employing multiple
searchers evidenced by substantial coverage of the search area.

4.6 Bayesian Update and Looping Function
Based on the significant simulation and field experiment studies, key avenues for improving the
performance of search as well as its operational relevance include the application of Bayesian
methods to incorporate imperfect sensing and prior intelligence models for likely locations of
the stationary target. Further, the use of adaptive search, where decisions on where to search are
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Figure 4.10: Google Earth overlay of major Levy waypoints generated by LookAheadLevyFlight.m
algorithm. The starting airfield, search center, and search boundary are annotated.

Figure 4.11: Google Earth overlay of the actual flight path of a single UAV searcher conducting the
look-ahead Levy search.

determined based on the results of previous search effort, is known to be significantly advan-
tageous in search [9, 49]. We explore such enhancements to the proposed approach, enabling
preliminary assessment of their value to the nondeterministic search process.
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Figure 4.12: A magnified section of the flight path traveled by the UAV compared to the waypoints
generated through the use of Dubins curves in LookAheadLevy.m. The simulation model created for
this thesis is demonstrably an adequate representation of the flight physics of a small UAV.

A Bayesian update scheme is applied to the simulation model, with a “looping” ability which
imparts a bias on the searcher direction based on iteratively updated probabilities of target loca-
tion, thereby potentially decreasing the time to target detection. As described in Section 2.2.2,
this Bayesian update process utilizes the prior probability that a target exists in the given cell
and updates that probability based on whether a detection occurs when the searcher “looks” in
that cell. This Bayesian update process allows for the incorporation and analysis of the charac-
teristics of an imperfect sensor, i.e., the probability of false alarm, α , and probability of missed
detection, β . We apply the Bayesian update scheme (where probability mass is shifted in accor-
dance to observations), though we make use of a perfect sensor in order to gain insight into the
exploitation of the biasing (i.e., looping) that results from the Bayesian update, as discussed in
detail in Section 2.2.2. For better visual representation and decreased simulation run time, we
scale down the search parameters to those shown in Table 4.9.
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Figure 4.13: Google Earth overlay of the actual flight path of a single UAV searcher conducting the
look-ahead Levy search.

Variable Range Units

TLOCK 90 [seconds]
rsensor 54 [meters]
rturn 25 [meters]
µ 100 [meters]
c 0.5 [none]
Rsearch 1500 [meters]
α 0.0 [none]
β 0.0 [none]
tloop 300 [seconds]

Table 4.9: Inputs to the simulation incorporating a Bayesian update and looping function.

As shown in Figure 4.14, the “binning” function of the LevyLoop.m algorithm tracks the prob-
ability density for discrete areas of the search grid. This running calculation is used to send
the searcher to clusters of high probability density upon expiration of the user determined loop
timer. In these simulation runs we employ a five minute loop timer.

To compare the performance of the Bayesian looped look-ahead search to that of the standard
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Figure 4.14: (a) Heat map showing the distribution of probability of target presence employing a perfect
sensor Bayesian search over the area. (b) The probability density of larger search area sections is used
to bias the movement of the searcher upon expiration of a loop timer.

look-ahead Levy search used for the majority of this research, we randomly draw a target po-
sition (xtarget ,ytarget), and run the simulation multiple times for each algorithm. The results of
average detection time and mission success are shown in Table 4.10.

P(success) TD,avg Favg(TD)

Standard Look-ahead Levy 1.00 1221 0.59
Looping Look-ahead Levy 0.90 480 0.35

Table 4.10: Comparison of performance between the standard Look-ahead Levy search and a look-ahead
Levy search implementing the looping function and Bayesian update. The looping function reduces the
average time to target detection, but the forced override of the length distribution sometimes leads to
exceeding the critical length, resulting in counter-targeting of the searcher, and overall mission failure.

The looping function overrides the random Levy length and heading angle distributions and
directly and manually steers the searcher toward the area of highest probability density. As
shown by the slightly lower probability of success, this looping bias may cause the searcher
to exceed the critical length and thus be counter-targeted. However, the average time to target
detection when implementing the looping function is almost one-third of the time of the standard
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look-ahead Levy search. As an added benefit of the looping function, on average, only half as
much of the search area needed to be uncovered to reveal the target location. This improvement
may have implications on counter-targeting probability itself, due to less “fly-over” of contested
territory. These results reiterate the need for accurate intelligence regarding enemy capability.
By including the looping function into the look-ahead Levy search, but limiting the maximum
straight-line distance flown by the searcher during the biased relocation to lcrit , the possibility
exists to reduce target detection time and exposure to adversarial assets while maximizing the
probability of mission success. Such assessment and analysis is left for follow-on studies that
can leverage these benefits.
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CHAPTER 5:
Conclusions and Future Avenues

5.1 Conclusion
The work accomplished in this thesis provides insight as to the utilization of nondeterministic
search patterns to counter anti-access area denial (A2AD) tactics becoming more prevalent in
foreign operations. The Levy distribution on leg lengths serves as only one particular avenue
to achieving a successful search over this contested territory. The benefits against counter-
targeting of the searcher afforded by the Levy distribution reside in the ability of the user to
adjust the Levy scaling parameter, c. Recall from Section 1.3 that as the value of c is increased,
the uniformity of leg lengths returned from the Levy distribution increases, resulting in a longer
average search leg length. For these higher values of c, the searcher has a greater tendency
to traverse the entirety of the search area during a span of limited endurance, likely resulting
in higher percentage of area covered, F(t), for a given search time. However, traveling these
longer leg lengths results in an increased probability of being counter-targeted due to exceeding
lcrit . For the sizes of search area explored in this research, changes in c provided only small
differences in the probability of mission success, albeit with a linear trend indicating that large
c over a large search area will result in a higher probability of mission failure. A small c

value (c≤ 1) provides the highest probability of mission success operating under the parameters
simulated in this research, since this ensures that the majority of Levy probability density is near
the µ value, allowing for the implementation of Dubins curves and retaining short flight legs,
thereby minimizing the probability of exceeding the critical length of the target lock time.

The Levy distribution has been established as the optimal search pattern when locating mo-
bile targets over an infinitely bound area [18, 26]. However, the limitations imposed on the
searcher’s travel by the finite area boundary used for this thesis may impact the optimality of
the Levy search, as shown by little difference in performance for changes in Levy parameters.
Future works focusing on high endurance searchers capable of searching long ranges must be
undertaken prior to labeling the Levy as the optimal distribution on leg lengths for the scenario
set here in. Thus, the main contribution of this thesis is the development of the simulation
model capable of examining various distributions on search leg length and searcher heading.
The scenario specific to this research focused on an airborne search of a flatland area. However,
this model has been developed with a robust searcher parameterization capability, and can be
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applicable to a variety of searcher platforms, from airborne to undersea.

5.2 Avenues for Future Work
The development of a simulation capable of analyzing performance for various nondeterministic
search pattern distributions encompassed the majority of the duration allotted for this research.
As such, there exists several avenues of future work available for continuation of the efforts
described in this thesis. An important aspect of a search simulation is the incorporation of
realism into the model, both operationally and environmentally. There are several extensions
that can be added to this simulation model to improve upon that realism.

From an operational perspective, the incorporation of multiple searchers and multiple targets,
both moving and stationary, will add increased realism and operational relativity. The Levy
distribution has been shown to outperform the “lawnmower” style continuous search, as well as
Brownian searches, when attempting to locate multiple moving targets using multiple searchers [23,
24, 34, 50, 51]. The field experiments conducted for this thesis (Figure 4.13) demonstrate that
the simultaneous employment of multiple searchers traveling on nondeterministic search paths
will result in a higher area coverage over a finite time period. This was simply an example of
multiple non-cooperative searches traveling paths derived from the same algorithm. Introduc-
tion of cooperative functions between these searches could serve to further increase the benefits
of the nondeterministic search [52]. The incorporation of these cooperative searchers can lead
to further investigation on proper searcher allocation once a target is found, especially when
it is expected that multiple targets are within the search area [53, 54]. The incorporation and
analysis of various distributions on searcher leg length and heading angle will provide insight
as to the optimal nondeterministic pattern when operating in a finite search area.

Modeling the shape and size of the searcher and targets would greatly effect the product of the
simulation. Accounting for radar cross section of the searcher relative to a known anti-UAV
asset can increase fidelity on the measure of counter-targeting time where as increasing the
size of the target beyond the simple meter squared metric utilized in this research may greatly
improve time to target detection.

The enhancement of the operating environment itself will add greater realism to the simulated
scenario. There have been several studies suggesting algorithmic solutions to obstacle avoid-
ance of unmanned searchers [52, 55, 56]. Incorporation of physical geography and integration
of these avoidance algorithms would reveal limitations on UAV flight, and would be particu-
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larly useful when translating this algorithm into use for a ground searcher. Work accomplished
regarding optimal coverage using a Dubins vehicle could be extended and incorporated into this
research by changing the shape of the search area to account for detailed territorial borders or
geographic constraints establishment, and analyzing the area coverage when a smooth circular
border is not established [57].

Further, adding weather factors such as course drift due to wind or sensor degradation due to
visibility limitations would also increase the realism of the simulation.

5.3 Operational Impact and Recommendations
Since the beginning of the new millennium, the United States has steadily increased reliance
on unmanned vehicles for conduct of critical missions. These platforms provide a means for
infiltrating contested territory, for conduct of strike or surveillance operations, without directly
endangering personnel. However, the world has taken notice of this trend in utilization of un-
manned searchers and, as a result, our adversaries have begin focusing training and technology
on anti-UAV programs, employing anti-access area denial strategies determined to thwart U.S.
efforts in intelligence, surveillance, and reconnaissance operations. Perhaps even more signif-
icant, is the subdued sense of conflict associated with destroying these inanimate objects, with
capturing of U.S. drones being used recently as a bolster of pride, where as the downing and
capture of a U.S. pilot would most surely be considered an act of war that many countries are
not willing to instigate. It is imperative to the longevity of these unmanned programs that we
develop tactics aimed at mitigating the A2AD tactics of our adversaries. The consumers of the
services provided by these UAVs and other unmanned platforms need to take a step back and
look toward the future, at the increasing threats and how we can best deploy stealth and random-
ness to mitigate them. The insights contrived from this thesis can help lead the discussion as to
strategies and technologies we must develop in order to maintain the technical and operational
edge over our adversaries, not only in the development of further unmanned systems, but in our
own research and engineering of anti-UAV weapons.

At the tactical level, this thesis develops a simulation model capable of informing the mission
commander regarding employment of nondeterministic searchers in a contested territory, an
increasingly common mission in today’s operational environment. The production of decision
support tools aimed at shaping the answers to questions such as what specific platform is suited
for a particular search mission, or how many of that platform need be deployed to provide
optimal results. Perhaps most importantly is the commanders ability to place a quantifiable
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estimate on the probability of achieving a mission success given a baseline intelligence report
regarding enemy capabilities.
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APPENDIX A:
Summary of Variables and Symbols

The MATLAB simulation developed for this thesis incorporates a robust parameterization ca-
pability, allowing for the exploration and analysis of multiple searcher types, search leg/angle
distributions, and search area characteristics. The simulation inputs which can be set by the user
are listed in Table A.1. The variables used as outputs to indicate search performance are shown
in Table A.2.

Table A.1: Simulation variables set by the user

Variable Description
Display Options

plot_ on set to ’1’ if any graphical display is desired
flight_ path_ on set to ’1’ if flight path track is to be displayed
l_ crit_ warning_ on set to ’1’ if warning meter for exceeding critical length is to

be displayed
coverage_ plot_ on set to ’1’ if area coverage plot as a function of time is to be

displayed
plot_ 3D set to ’1’ if 3D plot showing relative altitude is desired

Output Options

generate_ Lat_ Lon set to ’1’ if Cartesian waypoints generated during simula-
tion are to be converted to decimal lat/lon and loaded in
.fpf file for input to Procerus Virtual Cockpit

filename_ Levy input filename for general look-ahead Levy waypoints - de-
fault is ‘LevyWaypoints.fpf’

filename_ Dubin input filename for waypoints forced to adhere to Dubins
path - default is ’DubinsWaypoints.fpf’

Functional Options

loop_ levy set to ’1’ to implement looping function, sending searcher
to highest probability density area after defined t_ loop

time

Continued on next page
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Table A.1 – continued from previous page
Variable Description
t_ loop set time associated with looping function (how long to

search before moving to area of highest probability density)
iteration_ count set the number of simulation runs to conduct for the current

set of parameters
coverage_ on set to ’1’ if coverage calculations are to be completed (set-

ting to ’0’ turns off coverage if desired to save run time and
focus purely on detection or counter-targeting parameters)

target_ detect_ on allows user to turn off the target detection piece in order to
focus on coverage and/or counter-targeting

bayesian_ on set to ’1’ if Bayesian calculations are to be conducted (set-
ting to ’0’ assumes a perfect sensor and saves time/memory
on detection calculations)

counter_ target_ on allows user to turn off the target detection piece in order to
focus on coverage and/or target detection

Movement Characteristics of Searcher

v speed of searcher in meters per second
altitude altitude of the searcher corresponds to 2000 ft for UAV in

meters
r_ turn minimum turn radius of the searcher in meters
UAV_ endurance maximum endurance of the searcher in meters
c scaling parameter, determines the peak distribution of the

Levy curve, hence the lengths of each search leg

Sensor Characteristics of Searcher

fov field of view of the sensor, in conjunction with altitude,
determines sensor footprint. Default is 30 degrees as em-
ployed by a typical small UAV

a sensor probability of false detection
b sensor probability of missed detection
p_ confirm grid cell probability above which a target is confirmed to be

located in a given cell, c

Continued on next page
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Table A.1 – continued from previous page
Variable Description
p_ deny grid cell probability below which a target is confirmed not

to be located in a given cell, c

Counter-targeting Parameters

target_ lock intelligence-based time required for the anti-UAV asset to
gain target lock and destroy UAV searcher

Search Area Parameters

R_ search radius of the circular search area in meters
delta_ dist defines the distance between "looks" in meters. In a perfect

simulation this number would be 0, as the search would be
continuous. In order to expedite the running of the program
we use a default step distance of r, returning a minimum
96% coverage of the area flown over during each search leg
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Table A.2: Variables which are populated throughout the
simulation with information useful to the analysis of search
performance

Variable Description
Coverage Variables

coverage_plot Matrix representing discretized coverage area. Each cell
will be ’0’ if not searched, ’1’ if searched

coverage Matrix to store percent of area covered at the end of each
search leg, can store multiple iterations of simulation

prob_ density Matrix representing discretized coverage area. Each cell
will hold probability of target being located in that cell

time Matrix which stores the time stamp at the end of each search
leg; Indices map directly to coverage in ‘coverage; matrix

Performance Metrics

T_d_array Array to store final time to detect the target (‘0’ if no detec-
tion occurs)

T_c_array Array to store final time for searcher to be counter-targeted
(‘0’ if no counter-targeting occurs)

Nondeterministic Search Parameters

angles Array to store angles traveled as a result of heading changes
drawn from the uniform distribution

distances Array to store Levy lengths applied to each search leg
DubinsWaypoints Matrix to store all x-coordinates, y-coordinates, and altitude

of intermediate waypoints along Dubins path
LevyWaypoints Matrix to store all x-coordinates, y-coordinates, and altitude

of major Levy waypoints only
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APPENDIX B:
Software and Hardware

The following computing software and hardware was used in the development of the search
model and analysis of simulation results:

Software:

• Excel®
Microsoft®Office®Professional Plus 2010

• RStudio Statistical Software
Version 0.95.258

• Mathworks®MATLAB®R2012a
Version 7.14.0.739

The following MATLAB code was generated during development of this simulation. The
description of each function is discussed in detail in Chapter 3. Each can be made avail-
able upon request at http://faculty.nps.edu/thchung/

· LookAheadLevyFlight.m
· LevyGenerator.m
· LevyLength.m
· Dubins.m
· DubinsLSR.m
· DubinsRSL.m
· DubinsTurnAround.m
· LevyDetection.m
· LevyCoverage.m
· LevyLoop.m
· LevytoLatLon.m
· circle.m
· spasf.m
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Hardware:

• ARSENL-Lab6
Intel®Core™i7-2700K CPU @ 3.5 GHZ
32.0 GB

• Mac-C1MHH11PDV13
Intel®Core™i5 CPU @ 2.4 GHZ
4.0 GB

• PC-DELLXPS8300
Intel®Core™i7-2600K CPU @ 3.4 GHZ
12.0 GB

The following software was used in the conversion of simulation data to real world GPS data for
the conduct of field experimentation and the display of the resulting telemetry data: Software:

• Procerus Technologies®Virtual Cockpit™
Version 2.6.0 build 3 protocol 8.0.1

• Google®Earth©
Version 6.2.2.6613

• GPSVisualizer.com®
http://www.gpsvisualizer.com

Hardware:

• Procerus Unicorn UAV
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APPENDIX C:
Waypoint Data Processing for Field Experiments

This appendix summarizes the procedures for generating waypoint data for use in the Camp
Roberts field experiments, as well as the conversion of telemetry data collected from those
experiments to .kml files for display in Google Earth.

C.1 Waypoint Generation
The generation of a waypoint file in .fpf format, for upload directly to Procerus Virtual Cockpit,
is a functionality built directly into the LookAheadLevyFlight.m algorithm. In the section of
the code commented as “output options” there is a Boolean variable named generate_ Lat _

Lon. Setting this variable to ‘1’ activates two print scripts, one which writes the main Levy
waypoints to an .fpf file, the other that writes every waypoint used in the generation of the
Dubins path flight to a separate .fpf file. It is important to note when attempting to upload these
waypoints to Virtual Cockpit that the Dubins file can contain in excess of ten times the number
of waypoints as the Levy waypoint file.

The names of the output files can be defined by the user by changing the value of the filename_

Levy and filename_ Dubin string variables in this same section of the LookAheadLevyFlight.m
code. The default names of the files are “LevyWaypoints.fpf” and “DubinsWaypoints.fpf”. Run
the LookAheadLevyFlight.m to create and populate theses files, which will be output to the
main MATLAB directory.

To upload the waypoints, in Virtual Cockpit click ‘File’, ‘Load Flight Plan’, then select the
generated .fpf file from the MATLAB directory. Once uploaded, clicking the up arrow at the
bottom center of the Virtual Cockpit display screen will reveal the list of waypoints, showing
speed, altitude, latitude, and longitude. Any necessary adjustments can be made here prior to
transmitting to UAV.

C.2 Display of Waypoint Data
The format of the .fpf data file input to Virtual Cockpit requires that each line of waypoint in-
formation be followed by a blank line, effectively double spacing the waypoints. Unfortunately,
gpsvisualizer.com cannot recognize continuity between the waypoints if the line is skipped,
and the resultant .kml file will plot each waypoint, but will not connect a track between them.
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To prevent this, we developed a macro for Excel which simply removes the blank lines between
waypoints, as well as the extraneous header data required by Virtual Cockpit, but not suitable
for display in a .kml file. To compress the .csv waypoint file for transformation to a .kml file,
open the .fpf file generated by LookAheadLevyFlight.m in a text editor. Copy all the waypoint
information into a .csv file in Excel, then run the macro.

Once the UAV has conducted the Levy flight and the telemetry data has been downloaded, the
data can be sorted and parsed for use in the generation of a .kml file, able to be displayed as
waypoint tracks in Google Earth. The telemetry information returned from the UAV contains
108 columns of data, with one row assigned for each telemetry reading (thousands of rows). To
generate the .kml file, only the basic flight data is require - Heading, Speed, Altitude, Latitude,
and Longitude. The following steps describe the .kml generation process.

1. Open the telemetry file in MATLAB. The file is named with the UAV identification and
date, e.g. telemetry_ 2460 _ 2013_ 02_ 14_ 07.m is telemetry data for UAV 2460 flown
on February 14, 2013. Run this file to initialize and populate the telemetry.data variable.

2. Use the ‘dlmwrite’ command in MATLAB to transfer the telemetry data to an Excel .csv
file. Ensure the numerical precision is set to ‘8’ to so that the full latitude and longitude
values are transferred.

dlmwrite(‘filename.csv’,telemetry.data,‘delimiter’,‘,’,‘precision’,8);

3. Open the .csv file in Excel and run the first parsing macro by clicking the ‘Developer’ tab,
‘Macros’, selecting ‘TELEMETRY_ PARSE’, and clicking ‘Run’. This macro combines
all time stamp data into and labels each of the columns of telemetry data, placing all
of the data in a legible, organized format. This will allow the analyst to choose which
data is relevant to their needs. NOTE: This macro must be run to clean up the telemetry
data from MATLAB prior to running the .kml generation macro, ‘PARSE_ FOR_ KML_
GENERATION’. The VBA code for this macro can be made available from https://

faculty.nps.edu/thchung.
4. To further parse the data down to only those elements required for .kml generation, run the

.kml parsing function by again clicking the ‘Developer’ tab, ‘Macros’, and selecting the
‘PARSE_ FOR_ KML_ GENERATION’ macro and clicking ‘Run’. This macro is shown
in Listing C.1 and can be made available from https://faculty.nps.edu/thchung.
This parses the 108 data columns down to the 5 needed to display the flight path in Google
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Earth.
5. The easiest way to convert the .csv data to a .kml file is to use an external .kml generator

service, such as provided by http://GPSvisualizer.com. This website provides free
.kml conversion, and offers several options on display, ranging from color and shape of
waypoints to 3D altitude representation. Detailed instructions for use can be found on the
website.

6. Once the file is generated, double click the .kml file and the track appears in Google Earth.

Listing C.1: Parses telemetry data into compressed .csv for input to gpsvisualizer.com
Sub PARSE_FOR_KML_GENERATION ( )
'
' P a r s e s t e l e m e t r y d a t a f o r . kml g e n e r a t i o n f o r use i n Google E a r t h
'

Range ( "A:AG,AM:DB" ) . S e l e c t
Selection . D e l e t e Shift := xlToLeft
Range ( "A1" ) . S e l e c t
ActiveCell . FormulaR1C1 = " Speed "
Range ( "B1" ) . S e l e c t
ActiveCell . FormulaR1C1 = " A l t i t u d e "
Range ( "C1" ) . S e l e c t
ActiveCell . FormulaR1C1 = " Heading "
Range ( "D1" ) . S e l e c t
ActiveCell . FormulaR1C1 = " L a t i t u d e "
Range ( " E1" ) . S e l e c t
ActiveCell . FormulaR1C1 = " L o n g i t u d e "
Range ( " E1" ) . S e l e c t

End Sub
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APPENDIX D:
Calculations for Discrete Sample Spacing

To save runtime and processing power during simulation runs, we employ a discrete update
scheme to the searcher movement. Figure D.2 and the subsequent equations provide the math-
ematical background to these discrete updates as introduced in Section 3.4.1.

Figure D.1: This graph shows the effects of spacing between the discretized looks on the runtime of the
simulation. As the spacing increases, the simulation runtime decreases exponentially. Choosing a dis-
cretized spacing equal to the search radius provides 96% of the coverage attained through a continuous
search for a fraction of the runtime cost.

Figure D.2: This illustration shows the geometry involved in calculating the sensor overlap observed
during a discretized search with spacing less than twice the sensor radius.

Alens = 2Awedge−2A4Y ZS1 (D.1)

where Alens represents the overlapping portion of the sensor footprint between two subsequent
positions of the searcher. Awedge represents the wedge shaped portion of the overlap outlined in
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red in Figure D.2 and A4Y ZS1 represents the triangular portion of the wedge created by points
Y ZS1. We subtract Alens one time for every two waypoints on the search leg to achieve the
total new area covered by the searcher on that leg. The remainder of this section focuses on the
derivation of the equations to conduct these area calculations.

The area of the wedge is calculated as follows.

θ = 2cos−1
(

d
2rsensor

)
Awedge =

∫
θ

0

∫ rsensor

0
rsensordrsensordθ =

∫
θ

0

r2
sensor

2
dθ =

1
2

θr2
sensor

Setting the distance 4d between the “looks” to the radius of the sensor, rsensor, simplifies the
equation to

Awedge = r2
sensor cos−1

(
1
2

)
. (D.2)

The area of the triangle region Y ZS1 is calculated by

A4Y ZS1 =
d
2

√
r2

sensor−
1
4

d2

with the substitution of d = rsensor yielding

A4Y ZS1 =

√
3r2

sensor
4

(D.3)

Substitution and simplification of (D.1) reveals the area of double coverage between two subse-
quent waypoints of spacing r.

Alens =

(
2cos−1

(
1
2

)
−
√

3
2

)
r2

sensor

or
Alens = 1.2284r2

sensor (D.4)

Finally, the total area covered (Acovered) during a single leg of the discretized search can be
calculated and compared to the total area that would be covered by the perfect continuous
search on that same leg (Asearch) to determine the percentage of coverage (Pd) achieved through
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discretization of the searcher movement.

Acovered =
l j

rsensor

(
πr2

sensor−1.2284r2
sensor

)
Asearch = 2l jrsensor

Pd =
Acovered

Asearch
=

l j
rsensor

(
πr2

sensor−1.2284r2
sensor

)
2l jrsensor

Pd = 0.9566 (D.5)

Given the benefits of simulation run time and data storage utilizing this discrete movement
method, and the relative size of the search area compared to the area covered on each search
leg, a 96% coverage ratio is sufficient for use in this simulation.
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